OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 12 — Jun. 15, 2011
  • pp: 2188–2190

Modulation-free optical locking of an external-cavity diode laser to a filter cavity

Kazuhiro Hayasaka  »View Author Affiliations

Optics Letters, Vol. 36, Issue 12, pp. 2188-2190 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (351 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical locking to a filter cavity is an effective method to eliminate the limitations of an external-cavity diode laser, such as broad spontaneous emission backgrounds and frequency jitters. Stable operation of the optical locking requires simultaneous control of the feedback phase and the diode-laser frequency. Frequency dither is usually used to extract the two error signals, but this causes extra frequency modulation in the output beam. A modulation-free method for deriving the error signals by modulating the laser-cavity coupling strength is demonstrated with a violet diode laser. A modulation-free linewidth upper limit of about 7 kHz for a 1 s measurement is realized by the method.

© 2011 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 31, 2011
Revised Manuscript: May 3, 2011
Manuscript Accepted: May 4, 2011
Published: June 6, 2011

Kazuhiro Hayasaka, "Modulation-free optical locking of an external-cavity diode laser to a filter cavity," Opt. Lett. 36, 2188-2190 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991). [CrossRef]
  2. K. Toyoda, A. Miura, S. Urabe, K. Hayasaka, and M. Watanabe, Opt. Lett. 26, 1897 (2001). [CrossRef]
  3. J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, and K. Hayasaka, Opt. Lett. 32, 572 (2007). [CrossRef] [PubMed]
  4. B. Dahmani, L. Hollberg, and R. Drullinger, Opt. Lett. 12, 876 (1987). [CrossRef] [PubMed]
  5. Y. Zhang, K. Hayasaka, and K. Kasai, Appl. Phys. B 86, 643 (2007). [CrossRef]
  6. J. Labaziewicz, Y. Ge, P. Antohi, D. Leibrandt, K. R. Brown, and I. L. Chuang, Phys. Rev. Lett. 100, 013001 (2008). [CrossRef] [PubMed]
  7. S. X. Wang, J. Labaziewicz, Y. Ge, R. Shewmon, and I. L. Chuang, Phys. Rev. A 81, 062332 (2010). [CrossRef]
  8. M. Okano, H. Hara, M. Muramatsu, K. Doi, S. Uetake, Y. Takasu, and Y. Takahashi, Appl. Phys. B 98, 691 (2009). [CrossRef]
  9. Ph. Laurent, A. Clairon, and Ch. Breant, IEEE J. Quantum Electron. 25, 1131 (1989). [CrossRef]
  10. T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441(1980). [CrossRef]
  11. Ph. Laurent, D. Bicout, Ch. Breant, and A. Clairon, in Laser Spectroscopy IX (Academic, 1989), pp. 243–245.
  12. P. Buch and P. Kohns, IEEE J. Quantum Electron. 27, 1863 (1991). [CrossRef]
  13. K. Toyoda, Y. Kubota, T. Okano, and S. Urabe, Appl. Phys. B 82, 25 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited