OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 36, Iss. 12 — Jun. 15, 2011
  • pp: 2224–2226

Energy transport in a metamaterial subwavelength open-cavity resonator

Liwei Zhang, Yewen Zhang, Xiaodong Chen, Xiaoming Liu, Li Zhang, and Hong Chen  »View Author Affiliations


Optics Letters, Vol. 36, Issue 12, pp. 2224-2226 (2011)
http://dx.doi.org/10.1364/OL.36.002224


View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical and experimental investigation into the energy transport in a conjugate matched bilayer consisting of ε-negative (ENG) and μ-negative (MNG) slabs. It is proved that the conjugated matched ENG/MNG bilayer is a subwavelength open-cavity resonator, in which the resonance frequency is determined by the complete tunneling condition, and the Q factor increases exponentially with the slab thickness. It is revealed that the wave is not evanescent inside the bilayer, but it is a hybrid of a traveling wave and a reactive standing wave. It is also manifested during the transient wave propagation that the reactive field energy stored inside the bilayer is provided by the incident wave.

© 2011 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.7040) Optics at surfaces : Tunneling
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: April 13, 2011
Manuscript Accepted: May 11, 2011
Published: June 7, 2011

Citation
Liwei Zhang, Yewen Zhang, Xiaodong Chen, Xiaoming Liu, Li Zhang, and Hong Chen, "Energy transport in a metamaterial subwavelength open-cavity resonator," Opt. Lett. 36, 2224-2226 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-12-2224


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. S. Veselago, Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. S. M. Xiao, U. D. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, Opt. Lett. 34, 3478 (2009). [CrossRef] [PubMed]
  3. Q. Zhao, L. Kang, B. Du, H. Zhao, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Phys. Rev. Lett. 101, 027402 (2008). [CrossRef] [PubMed]
  4. A. Alù and N. Engheta, IEEE Trans. Antennas Propag. 51, 2558 (2003). [CrossRef]
  5. R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, Phys. Rev. B 75, 125118 (2007). [CrossRef]
  6. C. Ciracì and E. Centeno, Phys. Rev. Lett. 103, 063901(2009). [CrossRef] [PubMed]
  7. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007). [CrossRef] [PubMed]
  8. H. Xu, Y. H. Lu, Y. P. Lee, and B. S. Ham, Opt. Express 18, 17736 (2010). [CrossRef] [PubMed]
  9. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007). [CrossRef] [PubMed]
  10. D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, Phys. Rev. B 79, 245135 (2009). [CrossRef]
  11. L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 94, 243905 (2005). [CrossRef]
  12. A. Alù, N. Engheta, and R. W. Ziolkowski, Phys. Rev. E 74, 016604 (2006). [CrossRef]
  13. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000). [CrossRef]
  14. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  15. T. L. Floyd, Electric Circuit Fundamentals, 2nd ed. (Prentice Hall, 2006).
  16. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, 2006).
  17. P. S. Neelakanta, Handbook of Electromagnetic Materials (CRC Press, 1995).
  18. Y. Z. Wang, Y. W. Zhang, L. He, H. Q. Li, H. Chen, F. Q. Liu, and C. Caloz, J. Appl. Phys. 100, 113503 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited