OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 12 — Jun. 15, 2011
  • pp: 2266–2268

Optical surface Bloch modes of complete photonic bandgap materials as a basis of optical sensing

Shu-Yu Su, Lingling Tang, and Tomoyuki Yoshie  »View Author Affiliations

Optics Letters, Vol. 36, Issue 12, pp. 2266-2268 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface Bloch modes induced on three-dimensional dielectric photonic crystals with a complete photonic bandgap are evanescently decaying states at surfaces and have large field overlap with low-index media, resulting in narrow spectrum linewidth and simultaneously a large resonance shift due to a perturbation of the refractive index in the background media. Surface Bloch resonance states are analyzed for ( 001 ) , ( 100 ) , and ( 110 ) woodpile surface planes. Low-loss, high-sensitivity surface Bloch modes are also analyzed on a flat-top ( 001 ) woodpile planar surface. These analyzed surface Bloch modes are confined in a subwavelength scale and are expected to form a basis set used for optical resonance sensing.

© 2011 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(160.5293) Materials : Photonic bandgap materials

ToC Category:

Original Manuscript: March 15, 2011
Revised Manuscript: April 21, 2011
Manuscript Accepted: May 7, 2011
Published: June 8, 2011

Shu-Yu Su, Lingling Tang, and Tomoyuki Yoshie, "Optical surface Bloch modes of complete photonic bandgap materials as a basis of optical sensing," Opt. Lett. 36, 2266-2268 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B.E.Sernelius, ed., Surface Modes in Physics (Wiley, 2001). [CrossRef]
  2. J.Homola, ed., Surface Plasmon Resonance-Based Sensors (Springer, 2006). [CrossRef]
  3. A. Armani, R. Kulkarni, S. Fraser, R. P. Flagan, and K. J. Vahala, Science 317, 783 (2007). [CrossRef] [PubMed]
  4. F. Vollmer, S. Arnold, and D. Keng, Proc. Natl. Acad. Sci. USA 105, 20701 (2008). [CrossRef] [PubMed]
  5. T. Yoshie, L. Tang, and S.-Y. Su, Sensors 11, 1972 (2011). [CrossRef]
  6. V. I. Tamm, Zeitschrift für Physik A 76, 849 (1932). [CrossRef]
  7. W. Shockley, Phys. Rev. 56, 317 (1939). [CrossRef]
  8. P. Yeh, A. Yariv, and C. Hong, J. Opt. Soc. Am. 67, 423(1977). [CrossRef]
  9. M. Qiu and S. He, Phys. Lett. A 282, 85 (2001). [CrossRef]
  10. Y. Vlasov, N. Moll, and S. McNab, Opt. Lett. 29, 2175 (2004). [CrossRef] [PubMed]
  11. A. Rahachou and I. Zozoulenko, J. Opt. Soc. Am. B 23, 1679 (2006). [CrossRef]
  12. H. Chen, K. Tsia, and A. Poon, Opt. Express 14, 7368 (2006). [CrossRef] [PubMed]
  13. T. Lu, Y. Hsiao, W. Ho, and P. Lee, Appl. Phys. Lett. 94, 141110 (2009). [CrossRef]
  14. R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos, Phys. Rev. B 44, 10961 (1991). [CrossRef]
  15. K. Ishizaki and S. Noda, Nature 460, 367 (2009). [CrossRef] [PubMed]
  16. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, Nat. Mater. 8, 721 (2009). [CrossRef] [PubMed]
  17. L. Tang and T. Yoshie, J. Vac. Sci, Technol. B 28, 301 (2010). [CrossRef]
  18. L. Tang and T. Yoshie, Opt. Express 15, 17254 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited