OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 12 — Jun. 15, 2011
  • pp: 2327–2329

Nonunity permeability in metamaterial-based GaInAsP/InP multimode interferometers

T. Amemiya, T. Shindo, D. Takahashi, S. Myoga, N. Nishiyama, and S. Arai  »View Author Affiliations

Optics Letters, Vol. 36, Issue 12, pp. 2327-2329 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated an InP-based optical multimode interferometer (MMI) combined with metamaterials consisting of minute split-ring resonators (SRRs) arrayed on the MMI. The MMI could operate at an optical fiber communication wavelength of 1.5 μm . Magnetic resonance occurred between the SRR metamaterial and light at 1.5 μm , and the relative permeability of the metamaterial increased to 2.4 around this wavelength. This result shows that it is possible to use new materials with nonunity permeability to construct semiconductor-based photonic devices.

© 2011 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.5990) Integrated optics : Semiconductors
(160.3918) Materials : Metamaterials

ToC Category:
Integrated Optics

Original Manuscript: March 30, 2011
Revised Manuscript: May 14, 2011
Manuscript Accepted: May 14, 2011
Published: June 15, 2011

T. Amemiya, T. Shindo, D. Takahashi, S. Myoga, N. Nishiyama, and S. Arai, "Nonunity permeability in metamaterial-based GaInAsP/InP multimode interferometers," Opt. Lett. 36, 2327-2329 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Smit, R. Baets, and M. Wale, in IEEE Proceedings of the European Conference on Optical Communication (IEEE, 2009), paper 1.7.3.
  2. S. C. Nicholes, M. L. Masanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, J. Lightwave Technol. 28, 641 (2010). [CrossRef]
  3. H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007). [CrossRef] [PubMed]
  4. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, Opt. Express 15, 3333 (2007). [CrossRef] [PubMed]
  5. M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, Opt. Lett. 34, 19 (2009). [CrossRef]
  6. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003). [CrossRef]
  7. A. C. Peacock and N. G. R. Broaderick, Opt. Express 11, 2502 (2003). [CrossRef] [PubMed]
  8. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007). [CrossRef] [PubMed]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999). [CrossRef]
  10. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  11. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1259 (2006). [CrossRef] [PubMed]
  12. A. Ishikawa, T. Tanaka, and S. Kawata, J. Opt. Soc. Am. B 24, 510 (2007). [CrossRef]
  13. T. Amemiya, T. Shindo, D. Takahashi, N. Nishiyama, and S. Arai, J. Quantum Electron. 47, 736 (2011). [CrossRef]
  14. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited