OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 13 — Jul. 1, 2011
  • pp: 2495–2497

Three-dimensional holographic lithography by an iterative algorithm

Joshua J. Cowling, Gavin L. Williams, Alan Purvis, Richard McWilliam, Jose J. Toriz-Garcia, Nicholas L. Seed, Florian B. Soulard, and Peter A. Ivey  »View Author Affiliations

Optics Letters, Vol. 36, Issue 13, pp. 2495-2497 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have applied an iterative algorithm for hologram design with multiple output image planes arranged in close proximity to create continuous patterns within an imaging volume. These holograms have been designed for photolithography on three-dimensional surfaces. The influence of simulated image plane separation on the final image, and its suitability for lithography, is assessed. Results are presented and the most suitable case is demonstrated experimentally.

© 2011 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(110.3960) Imaging systems : Microlithography
(230.6120) Optical devices : Spatial light modulators
(110.6895) Imaging systems : Three-dimensional lithography

ToC Category:

Original Manuscript: March 16, 2011
Revised Manuscript: May 19, 2011
Manuscript Accepted: May 31, 2011
Published: June 23, 2011

Joshua J. Cowling, Gavin L. Williams, Alan Purvis, Richard McWilliam, Jose J. Toriz-Garcia, Nicholas L. Seed, Florian B. Soulard, and Peter A. Ivey, "Three-dimensional holographic lithography by an iterative algorithm," Opt. Lett. 36, 2495-2497 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010). [CrossRef]
  2. A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, Opt. Lett. 30, 1300(2005). [CrossRef] [PubMed]
  3. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).
  4. C. Bay, N. Huebner, J. Freeman, and T. Wilkinson, Opt. Lett. 35, 2230 (2010). [CrossRef] [PubMed]
  5. S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001). [CrossRef]
  6. R. Dorche, A. Lohmann, and Sinzinger, Appl. Opt. 33, 869 (1994). [CrossRef]
  7. J. Xia and H. Yin, Opt. Eng. 48, 020502 (2009). [CrossRef]
  8. M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, Opt. Eng. 44, 125805 (2005). [CrossRef]
  9. J. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005).
  10. M. Sypek, J. Opt. Commun. 116, 43 (1995). [CrossRef]
  11. A. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited