OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 13 — Jul. 1, 2011
  • pp: 2501–2503

Time-gating scheme based on a photodiode for single-photon counting

Patrick D. Kumavor, Behnoosh Tavakoli, Eric Donkor, and Quing Zhu  »View Author Affiliations

Optics Letters, Vol. 36, Issue 13, pp. 2501-2503 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (380 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fast, simple, and low-cost optical time-gating scheme for counting single photons is presented. Its construction consists of a silicon photodiode connected in series with a 50 Ω resistor and that operates in the photoconductive mode. The temporal resolution at the FWHM of the photon counting system was measured to be 62 ps . The profile of a single-photon pulse measured with the counting system agreed well with analytical results. The system was also used to successfully resolve a pair of targets with 4 mm separation inside a highly scattering medium by the use of time-gated early-arriving photons.

© 2011 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:

Original Manuscript: April 5, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: June 3, 2011
Published: June 24, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Patrick D. Kumavor, Behnoosh Tavakoli, Eric Donkor, and Quing Zhu, "Time-gating scheme based on a photodiode for single-photon counting," Opt. Lett. 36, 2501-2503 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, J. Biomed. Opt. 5, 144 (2000). [CrossRef] [PubMed]
  2. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008). [CrossRef] [PubMed]
  3. R. R. Duncan, A. Bergmann, M. A. Cousin, D. K. Apps, and M. J. Shipston, J. Microsc. 215, 1 (2004). [CrossRef] [PubMed]
  4. W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, Microsc. Res. Tech. 63, 58 (2004). [CrossRef]
  5. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, Opt. Lett. 30, 409 (2005). [CrossRef] [PubMed]
  6. X. F. Wang, T. Uchida, D. M. Coleman, and S. Minami, Appl. Spectrosc. 45, 360 (1991). [CrossRef]
  7. J. C. Hebden, R. A. Kruger, and K. S. Wong, Appl. Opt. 30, 788 (1991). [CrossRef] [PubMed]
  8. K. M. Yoo, B. B. Das, and R. R. Alfano, Opt. Lett. 17, 958(1992). [CrossRef] [PubMed]
  9. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, Science 253, 769 (1991). [CrossRef] [PubMed]
  10. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, Opt. Lett. 35, 2732 (2010). [CrossRef] [PubMed]
  11. S. Marengo, C. Pepin, T. Goulet, and D. Honde, IEEE J. Sel. Top. Quantum Electron. 5, 895 (1999). [CrossRef]
  12. D. R. Kirkby and D. T. Delpy, Phys. Med. Biol. 41, 939(1996). [CrossRef] [PubMed]
  13. C. Villa, P. D. Kumavor, and E. Donkor, IEEE Photon. Technol. Lett. 21, 1238 (2009). [CrossRef]
  14. N. C. Bruce, F. E. W. Schmidt, J. C. Dainty, N. P. Barry, S. C. W. Hyde, and P. M. W. French, Appl. Opt. 34, 5823 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited