OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 13 — Jul. 1, 2011
  • pp: 2596–2598

Nonlinear soliton matching between optical fibers

Christian Agger, Simon T. Sørensen, Carsten L. Thomsen, Søren R. Keiding, and Ole Bang  »View Author Affiliations

Optics Letters, Vol. 36, Issue 13, pp. 2596-2598 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, we propose a generic nonlinear coupling coefficient, η NL 2 = η | γ / β 2 | fiber 2 / | γ / β 2 | fiber 1 , which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η NL to demonstrate a significant soliton self- frequency shift of a fundamental soliton, and we show that nonlinear matching can take precedence over linear mode matching. The nonlinear coupling coefficient depends on both the dispersion ( β 2 ) and nonlinearity (γ), as well as on the power coupling efficiency η. Being generic, η NL enables engineering of general waveguide systems, e.g., for optimized Raman redshift or supercontinuum generation.

© 2011 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

Original Manuscript: May 2, 2011
Manuscript Accepted: May 28, 2011
Published: July 1, 2011

Christian Agger, Simon T. Sørensen, Carsten L. Thomsen, Søren R. Keiding, and Ole Bang, "Nonlinear soliton matching between optical fibers," Opt. Lett. 36, 2596-2598 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Travers, S. V. Popov, and J. R. Taylor, Opt. Lett. 30, 3132 (2005). [CrossRef] [PubMed]
  2. C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009). [CrossRef]
  3. P. S. Russell, J. Lightwave Technol. 24, 4729 (2006). [CrossRef]
  4. K. Okamoto, Fundamentals of Optical Waveguides(Elsevier, 2006).
  5. F. Gan, J. Non-Cryst. Solids 184, 9 (1995). [CrossRef]
  6. M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, J. Am. Ceram. Soc. 90, 1448 (2007). [CrossRef]
  7. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, J. Lightwave Technol. 21, 61 (2003). [CrossRef]
  8. M. H. Frosz, Opt. Express 18, 14778 (2010). [CrossRef] [PubMed]
  9. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  10. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, Appl. Phys. Lett. 97, 061106(2010). [CrossRef]
  11. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659(1986). [CrossRef] [PubMed]
  12. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited