OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 14 — Jul. 15, 2011
  • pp: 2731–2733

All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator

David Perron, Marcelo Wu, Cameron Horvath, Daniel Bachman, and Vien Van  »View Author Affiliations

Optics Letters, Vol. 36, Issue 14, pp. 2731-2733 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally investigated thermal nonlinear effects in a hybrid Au / SiO 2 / SU - 8 plasmonic microring resonator for nonlinear switching. Large ohmic loss in the metal layer gave rise to a high rate of light-to-heat conversion in the plasmonic waveguide, causing an intensity-dependent thermo-optic shift in the microring resonance. We obtained 30 times larger resonance shift in the plasmonic microring than in a similar SU-8 dielectric microring. Using an in-plane pump-and-probe configuration, we also demonstrated all-plasmonic nonlinear switching in the plasmonic microring with an on–off switching contrast of 4 dB over 50 mW input power.

© 2011 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.4360) Nonlinear optics : Nonlinear optics, devices
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: April 20, 2011
Revised Manuscript: June 9, 2011
Manuscript Accepted: June 12, 2011
Published: July 14, 2011

David Perron, Marcelo Wu, Cameron Horvath, Daniel Bachman, and Vien Van, "All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator," Opt. Lett. 36, 2731-2733 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Nat. Photon. 3, 55 (2008). [CrossRef]
  2. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, Nano Lett. 8, 1506 (2008). [CrossRef] [PubMed]
  3. C. Horvath, D. Bachman, M. Wu, D. Perron, and V. Van, “Polymer hybrid plasmonic waveguides and microring resonators,” IEEE Photon. Technol. Lett. (to be published).
  4. K. K. Tung, W. H. Wong, and E. Y. B. Pun, Appl. Phys. A 80, 621 (2005). [CrossRef]
  5. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  6. L. Yang, D. Dai, and S. He, Proc. SPIE 7631, 76310B (2009). [CrossRef]
  7. T. Yamane, N. Nagai, S.-I. Katayama, and M. Todoko, J. Appl. Phys. 91, 9772 (2002). [CrossRef]
  8. J.-P. Bourgoin, G.-G. Allogho, and A. Haché, J. Appl. Phys. 108, 073520 (2010). [CrossRef]
  9. A. K. Sharma and B. D. Gupta, Appl. Opt. 45, 151 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited