OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 15 — Aug. 1, 2011
  • pp: 2770–2772

Critical coupling in plasmonic resonator arrays

Sinan Balci, Coskun Kocabas, and Atilla Aydinli  »View Author Affiliations

Optics Letters, Vol. 36, Issue 15, pp. 2770-2772 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moiré surfaces. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. The critical coupling conditions depend on the superperiod of the Moiré surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have a relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Analytical and finite difference time domain calculations support the experimental observations.

© 2011 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Diffraction and Gratings

Original Manuscript: April 29, 2011
Revised Manuscript: June 13, 2011
Manuscript Accepted: June 21, 2011
Published: July 19, 2011

Sinan Balci, Coskun Kocabas, and Atilla Aydinli, "Critical coupling in plasmonic resonator arrays," Opt. Lett. 36, 2770-2772 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Horowitz and W. Hill, The Arts of Electronics (Cambridge University, 1989).
  2. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999). [CrossRef]
  3. A. Yariv, Electron. Lett. 36, 321 (2000). [CrossRef]
  4. H. Raether, Surface Plasmons (Springer-Verlag, 1986).
  5. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  6. S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, Appl. Phys. Lett. 98, 031101 (2011). [CrossRef]
  7. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, Phys. Rev. B 76, 113405 (2007). [CrossRef]
  8. A. Kocabas, S. S. Senlik, and A. Aydinli, Phys. Rev. Lett. 102, 063901 (2009). [CrossRef] [PubMed]
  9. S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, Appl. Phys. Lett. 97, 131103 (2010). [CrossRef]
  10. S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, Plasmonics 5, 429 (2010). [CrossRef]
  11. M. N. Zervas, Opt. Lett. 16, 720 (1991). [CrossRef] [PubMed]
  12. H. J. Simon, D. E. Mitchell, and J. G. Watson, Am. J. Phys. 43, 630 (1975). [CrossRef]
  13. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. Krenn, Phys. Rev. Lett. 95, 257403 (2005). [CrossRef] [PubMed]
  14. L. Helden, E. Eremina, N. Riefler, C. Hertlein, C. Bechinger, Y. Eremin, and T. Wriedt, Appl. Opt. 45, 7299 (2006). [CrossRef] [PubMed]
  15. P. Andrew and W. L. Barnes, Science 306, 1002 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited