OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 15 — Aug. 1, 2011
  • pp: 2874–2876

Large-mode-area fused-fiber combiners, with nearly lowest-mode brightness conservation

Yariv Shamir, Yoav Sintov, and Mark Shtaif  »View Author Affiliations

Optics Letters, Vol. 36, Issue 15, pp. 2874-2876 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show the feasibility of producing a low-mode all-fiber combiner fabricated from a large core and extremely small NA fibers. Although these fibers support multiple modes, the combiner that we produce can be operated nearly at the single mode regime while preserving the brightness of the combined beam almost perfectly with respect to the inputs. The M-square parameter of the combined beam was 2.3 and the power transfer efficiency was close to 100%. Such an all-fiber beam combining device is a rugged solution for high-brightness, high-efficiency beam delivery.

© 2011 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.2285) Optical devices : Fiber devices and optical amplifiers
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 17, 2011
Revised Manuscript: June 14, 2011
Manuscript Accepted: June 21, 2011
Published: July 25, 2011

Yariv Shamir, Yoav Sintov, and Mark Shtaif, "Large-mode-area fused-fiber combiners, with nearly lowest-mode brightness conservation," Opt. Lett. 36, 2874-2876 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007). [CrossRef]
  2. J. K. Kim, C. Hagemann, T. Schreiber, T. Peschel, S. Bohme, R. Eberhardt, and A. Tunnermann, Opt. Express 18, 13194(2010). [CrossRef] [PubMed]
  3. Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 75801R (2010). [CrossRef]
  4. Y. Shamir, Y. Sintov, and M. Shtaif, J. Opt. Soc. Am. B 27, 2669 (2010). [CrossRef]
  5. J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986). [CrossRef]
  6. F. Payne, C. Hussey, and M. Yataki, Electron. Lett. 21, 461 (1985). [CrossRef]
  7. C. Pare, P. Laperle, and Y. Tallion, Proc. SPIE 6343, 63430T(2006). [CrossRef]
  8. R. Zhang, X. Zhang, D. Meiser, and H. Gissen, Opt. Express 12, 5840 (2004). [CrossRef] [PubMed]
  9. A. Snyder and J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).
  10. J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986). [CrossRef]
  11. K.-S. Chiang, Electron. Lett. 23, 112 (1987). [CrossRef]
  12. J. S. Hamper, C. P. Botham, and S. Hornung, Electron. Lett. 24, 245 (1988). [CrossRef]
  13. K. Lyytikanen, Opt. Express 12, 972 (2004). [CrossRef]
  14. B. S. Wang and E. W. Mies, Proc. SPIE 7134, 71341I (2008). [CrossRef]
  15. R. J. Black and R. Bourbonais, IEEE Proc., J. Optoelectron. 133, 377 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited