OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 15 — Aug. 1, 2011
  • pp: 2904–2906

Efficiency and temporal response of crystalline Kerr media in collinear optical Kerr gating

Zhihao Yu, Lars Gundlach, and Piotr Piotrowiak  »View Author Affiliations

Optics Letters, Vol. 36, Issue 15, pp. 2904-2906 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical Kerr gating is widely used in ultrafast measurements ranging from pulse characterization to spectroscopy and microscopy. We examined the efficiency and the temporal response of three cubic lattice Kerr media, YAG, GGG and BGO, and compared them with the well studied fused silica (fast response, low efficiency) and STO (high efficiency, slow response). YAG and GGG emerged as superior materials for ultrafast spectroscopy and microscopy applications thanks to their fast Kerr response and considerably higher gating efficiency than silica at low gating energies. Importantly, it was found that in collinear geometry all tested materials except STO are capable of reaching nearly 100% transmission.

© 2011 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(320.0320) Ultrafast optics : Ultrafast optics
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:

Original Manuscript: April 12, 2011
Revised Manuscript: June 23, 2011
Manuscript Accepted: July 2, 2011
Published: July 29, 2011

Zhihao Yu, Lars Gundlach, and Piotr Piotrowiak, "Efficiency and temporal response of crystalline Kerr media in collinear optical Kerr gating," Opt. Lett. 36, 2904-2906 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Duguay and J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969). [CrossRef]
  2. P. P. Ho and R. R. Alfano, Phys. Rev. A 20, 2170 (1979). [CrossRef]
  3. R. Hellwarth, J. Cherlow, and T.-T. Yang, Phys. Rev. B 11, 964 (1975). [CrossRef]
  4. S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317(2000). [CrossRef]
  5. S. Arzhantsev and M. Maroncelli, Appl. Spectrosc. 59, 206 (2005). [CrossRef] [PubMed]
  6. B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, Appl. Phys. B 76, 809 (2003). [CrossRef]
  7. L. Gundlach and P. Piotrowiak, Opt. Lett. 33, 992 (2008). [CrossRef] [PubMed]
  8. T. Fujino, T. Fujima, and T. Tahara, Appl. Phys. Lett. 87, 131105 (2005). [CrossRef]
  9. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, J. Opt. Soc. Am. B 16, 1904(1999). [CrossRef]
  10. R. Nakamura and Y. Kanematsu, Rev. Sci. Instrum. 75, 636(2004). [CrossRef]
  11. Z. Yu, X. Chen, Y. Weng, and J.-y. Zhang, Opt. Lett. 34, 1117(2009). [CrossRef] [PubMed]
  12. J. E. Griffiths and K. Nassau, Appl. Spectrosc. 34, 395(1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited