OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 15 — Aug. 1, 2011
  • pp: 2985–2987

Design of waveguide-integrated semiconductor laser sources for optical frequency comb generation

David Bitauld, Simon Osborne, and Stephen O’Brien  »View Author Affiliations

Optics Letters, Vol. 36, Issue 15, pp. 2985-2987 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A numerical study of threshold gain and modal dispersion in integrated semiconductor laser optical frequency comb sources is presented. We consider an example device where one of the cleaved facets of the laser is replaced by a short Bragg grating section and show that as many as 16 modes can be selected at the first harmonic of the underlying Fabry–Perot cavity. An intracavity approach to limiting the grating-induced dispersion that can be implemented directly through the grating profile is demonstrated.

© 2011 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.2020) Lasers and laser optics : Diode lasers
(140.3410) Lasers and laser optics : Laser resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 3, 2011
Revised Manuscript: July 1, 2011
Manuscript Accepted: July 6, 2011
Published: August 1, 2011

David Bitauld, Simon Osborne, and Stephen O’Brien, "Design of waveguide-integrated semiconductor laser sources for optical frequency comb generation," Opt. Lett. 36, 2985-2987 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Alduino and M. Paniccia, Nat. Photonics 1, 153 (2007). [CrossRef]
  2. X. Yi, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, J. Lightwave Technol. 28, 2054 (2010). [CrossRef]
  3. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Phys. Rev. Lett. 93, 243905(2004). [CrossRef]
  4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007). [CrossRef] [PubMed]
  5. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, Nat. Photonics 4, 37 (2010). [CrossRef]
  6. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009). [CrossRef]
  7. Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q.-T. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J.-C. Simon, IEEE Photon. Technol. Lett. 23, 453 (2011). [CrossRef]
  8. S. O’Brien, S. Osborne, D. Bitauld, N. Brandonisio, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, IEEE Trans. Microwave Theory Tech. 58, 3083 (2010). [CrossRef]
  9. D. Bitauld, S. Osborne, and S. O’Brien, Opt. Lett. 35, 2200(2010). [CrossRef] [PubMed]
  10. S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, J. Opt. Soc. Am. B 23, 1046 (2006). [CrossRef]
  11. G. Adolfsson, J. Bengtsson, and A. Larsson, J. Opt. Soc. Am. B 27, 118 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited