OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 16 — Aug. 15, 2011
  • pp: 3085–3087

Why can soliton explosions be controlled by higher-order effects?

Sofia C. V. Latas and Mário F. S. Ferreira  »View Author Affiliations

Optics Letters, Vol. 36, Issue 16, pp. 3085-3087 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3066 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate numerically the impact of some higher-order effects, namely, self-frequency shift, self-steepening, and third-order dispersion, on the erupting soliton solutions of the quintic complex Ginzburg–Landau equation. We consider particularly the impact of these higher-order effects in the spectral domain from which we can describe the pulse characteristics in the time domain. These effects can filter in different ways the spectral perturbations that contribute to pulse explosions. We show that a proper combination of the three higher-order effects can provide a filtering of the spectral perturbations in such a way that a stable fixed-shape pulse propagation is achieved.

© 2011 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: May 31, 2011
Manuscript Accepted: June 27, 2011
Published: August 8, 2011

Sofia C. V. Latas and Mário F. S. Ferreira, "Why can soliton explosions be controlled by higher-order effects?," Opt. Lett. 36, 3085-3087 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall, 1997).
  2. N.Akhmediev and A.Ankiewicz, eds., Dissipative Solitons (Springer-Verlag, 2005). [CrossRef]
  3. M. Ferreira, Nonlinear Effects in Optical Fibers (Wiley, 2011). [CrossRef]
  4. J. D. Moores, Opt. Commun. 96, 65 (1993). [CrossRef]
  5. L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, Opt. Lett. 17, 1575 (1992). [CrossRef] [PubMed]
  6. W. J. Firth and A. J. Scroggie, Phys. Rev. Lett. 76, 1623(1996). [CrossRef] [PubMed]
  7. P. S. Jian, W. E. Torruellas, M. Haelterman, S. Trillo, U. Peschel, and F. Lederer, Opt. Lett. 24, 400 (1999). [CrossRef]
  8. W. Chang, A. Ankiewicz, N. Akhmediev, and J. Soto-Crespo, Phys. Rev. E 76, 016607 (2007). [CrossRef]
  9. S. Mancas and S. Choudhury, Chaos Solitons Fractals 40, 91 (2009). [CrossRef]
  10. J. M. Soto-Crespo, N. N. Akhmediev, and A. Ankiewicz, Phys. Rev. Lett. 85, 2937 (2000). [CrossRef] [PubMed]
  11. N. N. Akhmediev and J. M. Soto-Crespo, Phys. Rev. E 70, 036613 (2004). [CrossRef]
  12. J. M. Soto-Crespo and N. N. Akhmediev, Math. Comput. Simul. 69, 526 (2005). [CrossRef]
  13. S. T. Cundiff, J. M. Soto-Crespo, and N. N. Akhmediev, Phys. Rev. Lett. 88, 073903 (2002). [CrossRef] [PubMed]
  14. H. Tian, Z. Li, J. Tian, G. Zhou, and J. Zi, Appl. Phys. B 78, 199 (2004). [CrossRef]
  15. L. Song, L. Li, Z. Li, and G. Zhou, Opt. Commun. 249, 301(2005). [CrossRef]
  16. S. Latas and M. Ferreira, Opt. Lett. 35, 1771 (2010). [CrossRef] [PubMed]
  17. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1997).
  18. F. If, P. Berg, P. L. Christiansen, and O. Skovgaard, J. Comput. Phys. 72, 501 (1987). [CrossRef]
  19. M. Facão, I. Carvalho, S. Latas, and M. Ferreira, Phys. Lett. A 374, 4844 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited