OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 16 — Aug. 15, 2011
  • pp: 3109–3111

Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, and D. Hofstetter  »View Author Affiliations

Optics Letters, Vol. 36, Issue 16, pp. 3109-3111 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The frequency noise properties of commercial distributed feedback quantum cascade lasers emitting in the 4.6 μm range and operated in cw mode near room temperature ( 277 K ) are presented. The measured frequency noise power spectral density reveals a flicker noise dropping down to the very low level of < 100 Hz 2 / Hz at 10 MHz Fourier frequency and is globally a factor of 100 lower than data recently reported for a similar laser operated at cryogenic temperature. This makes our laser a good candidate for the realization of a mid-IR ultranarrow linewidth reference.

© 2011 Optical Society of America

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(300.3700) Spectroscopy : Linewidth
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 30, 2011
Revised Manuscript: July 19, 2011
Manuscript Accepted: July 19, 2011
Published: August 10, 2011

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, and D. Hofstetter, "Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature," Opt. Lett. 36, 3109-3111 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, Appl. Phys. Lett. 94, 141105 (2009). [CrossRef]
  2. S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mücke, F. N. C. Wong, E. P. Ippen, and F. X. Kärtner, Opt. Lett. 30, 570 (2005). [CrossRef] [PubMed]
  3. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, Phys. Rev. A 77, 053809 (2008). [CrossRef]
  4. C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982). [CrossRef]
  5. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovaninni, S. Blaser, L. Hvozdara, and J. Faist, Appl. Phys. Lett. 89, 091121 (2006). [CrossRef]
  6. G. Di Domenico, S. Schilt, and P. Thomann, Appl. Opt. 49, 4801 (2010). [CrossRef] [PubMed]
  7. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, Phys. Rev. Lett. 104, 083904 (2010). [CrossRef] [PubMed]
  8. T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Opt. Lett. 27, 170 (2002). [CrossRef]
  9. S. W. Sharpe, J. F. Kelly, R. M. Williams;, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon and A. Y. Cho, Proc. SPIE 3758, 23 (1999). [CrossRef]
  10. A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, IEEE Photon. Technol. Lett. 21, 814 (2009). [CrossRef]
  11. E.F. Steigmeier, Appl. Phys. Lett. 3, 6 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited