OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 16 — Aug. 15, 2011
  • pp: 3139–3141

Generation of a twin beam at the cesium line and telecom wavelength by cavity phase matching

Y. H. Liu, Z. D. Xie, W. Ling, X. J. Lv, and S. N. Zhu  »View Author Affiliations

Optics Letters, Vol. 36, Issue 16, pp. 3139-3141 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cavity phase matching has been recently demonstrated as a phase-matching method for efficient nonlinear frequency conversion in a microcavity. Here we extend it to the Type I configuration using a sub-coherent-length optical parametric oscillator consisting of an MgO-doped lithium niobate crystal sheet. It generates a tunable single-longitudinal-mode twin beam, which covers the cesium D2 line of 852.1 nm and the extended band of optical communication. This microcavity is capable of peak output power of 58 kW with a maximum conversion efficiency of 18.5%. Broad applications in the areas of light–atom interaction, spectroscopy, optical telecommunication, and quantum optics can be expected.

© 2011 Optical Society of America

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.4780) Lasers and laser optics : Optical resonators
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 9, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 19, 2011
Published: August 10, 2011

Y. H. Liu, Z. D. Xie, W. Ling, X. J. Lv, and S. N. Zhu, "Generation of a twin beam at the cesium line and telecom wavelength by cavity phase matching," Opt. Lett. 36, 3139-3141 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, and K. Hayasaka, Opt. Lett. 32, 572 (2007). [CrossRef] [PubMed]
  2. G. Ferrari, M.-O. Mewes, F. Schreck, and C. Salomon, Opt. Lett. 24, 151 (1999). [CrossRef]
  3. B. M. Welsh and C. S. Gardner, Appl. Opt. 28, 4141(1989). [CrossRef] [PubMed]
  4. Y. Feng, L. Taylor, and D. Bonaccini Calia, Opt. Express 16, 10927 (2008). [CrossRef] [PubMed]
  5. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, Opt. Express 14, 8540 (2006). [CrossRef] [PubMed]
  6. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004). [CrossRef]
  7. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 98, 181106 (2011). [CrossRef]
  8. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, Opt. Lett. 20, 875 (1995). [CrossRef] [PubMed]
  9. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 161110 (2009). [CrossRef]
  10. R. R. Willey, Thin Solid Films 398, 1 (2001). [CrossRef]
  11. M. K. Dhodhi, S. Tariq, and K. A. Saleh, Comput. Commun. 24, 1726 (2001). [CrossRef]
  12. Z. D. Xie, X. J. Lv, Y. H. Liu, W. Ling, Z. L. Wang, Y. X. Fan, and S. N. Zhu, Phys. Rev. Lett. 106, 083901 (2011). [CrossRef] [PubMed]
  13. R. Haïdar, N. Forget, and E. Rosencher, IEEE J. Quantum Electron. 39, 569 (2003). [CrossRef]
  14. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962). [CrossRef]
  15. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, Appl. Phys. B 86, 111(2007). [CrossRef]
  16. J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, Phys. Rev. A 70, 042315 (2004). [CrossRef]
  17. Y. Chen, S. Chen, Z. Yuan, B. Zhao, C. Chuuand, J. Schmiedmayer, and J. Pan, Nat. Phys. 4, 103 (2008). [CrossRef]
  18. M. Scholz, L. Koch, R. Ullmann, and O. Benson, Appl. Phys. Lett. 94, 201105 (2009). [CrossRef]
  19. X. Bao, Y. Qian, J. Yang, H. Zhang, Z. Chen, T. Yang, and J. Pan, Phys. Rev. Lett. 101, 190501 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited