OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 16 — Aug. 15, 2011
  • pp: 3151–3153

Role of spatial coherence in Goos-Hänchen and Imbert–Fedorov shifts

Andrea Aiello and J. P. Woerdman  »View Author Affiliations

Optics Letters, Vol. 36, Issue 16, pp. 3151-3153 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (112 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theory for Goos-Hänchen (GH) and Imbert–Fedorov (IF) shifts for beams of light with arbitrary spatial coherence. By applying the well-known theory of partial spatial coherence, we can calculate explicitly spatial and angular GH and IF shifts for completely polarized beams of any shape and spatial coherence. For the specific case of a Gauss-Schell source, we find that only the angular part of GH and IF shifts is affected by the spatial coherence of the beam. A physical explanation of our results is given.

© 2011 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Coherence and Statistical Optics

Original Manuscript: June 9, 2011
Manuscript Accepted: June 30, 2011
Published: August 10, 2011

Andrea Aiello and J. P. Woerdman, "Role of spatial coherence in Goos-Hänchen and Imbert–Fedorov shifts," Opt. Lett. 36, 3151-3153 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos and H. Hänchen, Ann. Phys. 1, 333 (1947). [CrossRef]
  2. K. Artmann, Ann. Phys. 2, 87 (1948). [CrossRef]
  3. F. I. Fedorov, Dokl. Akad. Nauk SSSR 105, 465 (1955).
  4. C. Imbert, Phys. Rev. D 5, 787 (1972). [CrossRef]
  5. K. Yu. Bliokh and Y. P. Bliokh, Phys. Rev. E 96, 243903(2006).
  6. A. Aiello and J. P. Woerdman, Opt. Lett. 33 (13), 1437(2008). [CrossRef] [PubMed]
  7. M. V. Berry, Proc. R. Soc. A, published online before print March 23, 2011 doi: 10.1098/rspa.2011.0081 (2011).
  8. M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, Nat. Photonics 3, 337 (2009). [CrossRef]
  9. M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, Phys. Rev. A 82, 023817 (2010). [CrossRef]
  10. H. Schomerus and M. Hentschel, Phys. Rev. Lett. 75, 066609 (2007).
  11. C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydło, Phys. Rev. Lett. 102, 146804 (2009). [CrossRef] [PubMed]
  12. M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004). [CrossRef] [PubMed]
  13. K. Yu. Bliokh and Y. P. Bliokh, Phys. Rev. Lett. 96, 073903(2006). [CrossRef] [PubMed]
  14. O. Hosten and P. Kwiat, Science 319, 787 (2008). [CrossRef] [PubMed]
  15. R. Simon and T. Tamir, J. Opt. Soc. Am. A 6, 18 (1989). [CrossRef]
  16. L.-Q. Wang, L.-G. Wang, S.-Y. Zhu, and M. S. Zubairy, J. Phys. B 41, 055401 (2008). [CrossRef]
  17. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
  18. We do not consider here unpolarized beams. This case is not interesting because both spatial and angular GH shifts naturally split in two independent components for linear polarization parallel (p) and perpendicular (s) to the plane of incidence. For the IF shifts the situation is analogous with the two independent polarization components being now the left-circular and the right-circular ones. From this fact it follows that, for example, a completely unpolarized beam will simply undergo a spatial GH shift equal to the sum of the 50% of the shift of a p-polarized beam and the 50% of the shift of a s-polarized beam.
  19. F. Gori, Opt. Commun. 34, 301 (1980). [CrossRef]
  20. A. Starikov and E. Wolf, J. Opt. Soc. Am. 72, 923 (1982). [CrossRef]
  21. J. W. Goodman, Statistical Optics (John Wiley & Sons, Inc., NY, 2000).
  22. A. Aiello, M. Merano, and J. P. Woerdman, Phys. Rev. A 80, 061801(R) (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited