OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 16 — Aug. 15, 2011
  • pp: 3245–3247

High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media

Shan Zhao  »View Author Affiliations

Optics Letters, Vol. 36, Issue 16, pp. 3245-3247 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell’s equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(260.2030) Physical optics : Dispersion
(160.2710) Materials : Inhomogeneous optical media

ToC Category:

Original Manuscript: June 8, 2011
Manuscript Accepted: July 18, 2011
Published: August 15, 2011

Shan Zhao, "High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media," Opt. Lett. 36, 3245-3247 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Joseph, S. C. Hagness, and A. Taflove, Opt. Lett. 16, 1412 (1991). [CrossRef] [PubMed]
  2. O. P. Gandhi, B.-Q. Gao, and J.-Y. Chen, IEEE Trans. Microwave Theory Tech. 41, 658 (1993). [CrossRef]
  3. J. Li, J. Comput. Appl. Math. 188, 107 (2006). [CrossRef]
  4. T. Lu, P. Zhang, and W. Cai, J. Comput. Phys. 200, 549 (2004). [CrossRef]
  5. Y. Q. Huang and J. Li, J. Sci. Comput. 41, 321 (2009). [CrossRef]
  6. B. Wang, Z. Xie, and Z. Zhang, J. Comput. Phys. 229, 8552 (2010). [CrossRef]
  7. Y. Zhao and Y. Hao, IEEE Trans. Antennas Propag. 55, 3070 (2007). [CrossRef]
  8. A. Deinega and I. Valuev, Opt. Lett. 32, 3429 (2007). [CrossRef] [PubMed]
  9. A. Mohammadi, T. Jalali, and M. Agio, Opt. Express 16, 7397 (2008). [CrossRef] [PubMed]
  10. J. S. Hesthaven, Adv. Imaging Electron Phys. 127, 59(2003). [CrossRef]
  11. S. Zhao and G. W. Wei, J. Comput. Phys. 200, 60 (2004). [CrossRef]
  12. S. Zhao, J. Comput. Phys. 229, 3155 (2010). [CrossRef]
  13. S. Zhao and G. W. Wei, Int. J. Numer. Methods Eng. 77, 1690 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited