OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 16 — Aug. 15, 2011
  • pp: 3257–3259

Degenerate band edges in optical fiber with multiple grating: efficient coupling to slow light

Nadav Gutman, Lindsay C. Botten, Andrey A. Sukhorukov, and C. Martijn de Sterke  »View Author Affiliations


Optics Letters, Vol. 36, Issue 16, pp. 3257-3259 (2011)
http://dx.doi.org/10.1364/OL.36.003257


View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Degenerate band edges (DBEs) of a photonic bandgap have the form ( ω ω D ) k 2 m for integers m > 1 , with ω D the frequency at the band edge. We show theoretically that DBEs lead to efficient coupling into slow-light modes without a transition region, and that the field strength in the slow mode can far exceed that in the incoming medium. A method is proposed to create a DBE of arbitrary order m by coupling m optical modes with multiple superimposed gratings. The enhanced coupling near a DBE occurs because of the presence of one or more evanescent modes, which are absent at conventional quadratic band edges. We furthermore show that the coupling can be increased or suppressed by varying the number of excited evanescent waves.

© 2011 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2310) Fiber optics and optical communications : Fiber optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 10, 2011
Manuscript Accepted: July 8, 2011
Published: August 15, 2011

Citation
Nadav Gutman, Lindsay C. Botten, Andrey A. Sukhorukov, and C. Martijn de Sterke, "Degenerate band edges in optical fiber with multiple grating: efficient coupling to slow light," Opt. Lett. 36, 3257-3259 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-16-3257


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Baba, Nat. Photon. 2, 465 (2008). [CrossRef]
  2. K. Sakoda, Optical Properties of Photonic Crystal(Springer, 2001).
  3. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, Opt. Express 13, 7145 (2005). [CrossRef] [PubMed]
  4. C. M. de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, Opt. Express 17, 17338 (2009). [CrossRef]
  5. P. Velha, J. P. Hugonin, and P. Lalanne, Opt. Express 15, 6102 (2007). [CrossRef] [PubMed]
  6. T. D. Happ, M. Kamp, and A. Forchel, Opt. Lett. 26, 1102(2001). [CrossRef]
  7. A. A. Sukhorukov, C. J. Handmer, C. M. de Sterke, and M. J. Steel, Opt. Express 15, 17954 (2007). [CrossRef] [PubMed]
  8. H. Kogelnik, in Topics in Applied Physics: Integrated Optics, T.Tamir, ed. (Springer, 1979), pp. 13–81.
  9. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006). [CrossRef]
  10. V. B. Lidskii, USSR Comput. Math. Math. Phys. 6, 73 (1966). [CrossRef]
  11. A. Figotin and I. Vitebskiy, Waves Random Complex Media 16, 293 (2006). [CrossRef]
  12. A. Figotin and I. Vitebskiy, Phys. Rev. E 74, 17 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited