OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 17 — Sep. 1, 2011
  • pp: 3308–3310

Self-referenced method for terahertz wave time-domain spectroscopy

Albert Redo-Sanchez and Xi-Cheng Zhang  »View Author Affiliations

Optics Letters, Vol. 36, Issue 17, pp. 3308-3310 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The method allows retrieval of the absorbance of a sample without the need for a reference measurement. The method measures the dynamic variation of frequency resolution as the waveform is being acquired. In terahertz wave time-domain spectroscopy, the frequency resolution increases as the temporal window increases. Therefore, narrow absorption peaks will appear in the spectrum when the temporal window is long enough to resolve the peak. By measuring the dynamic values of each frequency component at specific points in time, a reference value and a peak value are extracted and, hence, the self-referenced is achieved. In addition, the method provides a mechanism to remove the effects of echoes, which enables arbitrary temporal window length and, thus, achieves high-resolution frequency. Examples of extraction of the water vapor lines and resonant features in gas and semiconductors are demonstrated in transmission and reflection geometries.

© 2011 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: June 17, 2011
Revised Manuscript: July 12, 2011
Manuscript Accepted: July 22, 2011
Published: August 17, 2011

Albert Redo-Sanchez and Xi-Cheng Zhang, "Self-referenced method for terahertz wave time-domain spectroscopy," Opt. Lett. 36, 3308-3310 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989). [CrossRef] [PubMed]
  2. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001). [CrossRef]
  3. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, Opt. Express 15, 12060 (2007). [CrossRef] [PubMed]
  4. Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005). [CrossRef]
  5. C. Baker, T. Lo, W. Tribe, B. Cole, M. Hogbin, and M. Kemp, Proc. IEEE 95, 1559 (2007). [CrossRef]
  6. Existing and Potential Standoff Explosives Detection Techniques (National Research Council of the National Academies, 2004).
  7. H. Van De Hulst, Light Scattering by Small Particles, 1st ed. (Dover Publications, 1981).
  8. F. Gan, G. Ruan, and J. Mo, Chemom. Intell. Lab. Syst. 82, 59 (2006). [CrossRef]
  9. A. Koch and J. Weber, Appl. Spectrosc. 52, 970 (1998). [CrossRef]
  10. O. Hirsch, P. Alexander, and L. F. Gladden, Microelectron. J. 39, 841–848 (2008). [CrossRef]
  11. L. Zhang, H. Zhong, C. Deng, X. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 091117 (2008). [CrossRef]
  12. W. Li, H. Zhong, L. Zhang, C. Deng, and C. Zhang, Proc. SPIE 7158, 71581M1 (2009).
  13. P. U. Jepsen, U. Moller, and H. Merbold, Opt. Express 15, 14717 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited