OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 17 — Sep. 1, 2011
  • pp: 3356–3358

Quasi-monochromatic bound on ultrashort light-pulse transmission through fog

Jeffrey H. Shapiro  »View Author Affiliations


Optics Letters, Vol. 36, Issue 17, pp. 3356-3358 (2011)
http://dx.doi.org/10.1364/OL.36.003356


View Full Text Article

Enhanced HTML    Acrobat PDF (136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of ultrashort (femtosecond duration) light pulses for line-of-sight free-space optical (FSO) communication through fog is receiving increasing attention. Assuming that the transmitter power is low enough to preclude nonlinear interactions, and that scattering-induced multipath spread is less than the reciprocal of the scattering-induced Doppler spread, it is shown that the average transmitter-to-receiver fractional energy transfer of an ultrafast FSO system cannot exceed that of a quasimonochromatic (nanosecond pulse duration) system operating at the optimum wavelength within the ultrafast system’s spectrum. Thus, an ultrashort-pulse system is not a solution for high-data-rate FSO communication through fog, because, at best, it will reproduce on average the energy-transfer performance of a wavelength-optimized quasimonochromatic system.

© 2011 Optical Society of America

OCIS Codes
(290.1310) Scattering : Atmospheric scattering
(320.2250) Ultrafast optics : Femtosecond phenomena
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 9, 2011
Revised Manuscript: July 22, 2011
Manuscript Accepted: July 29, 2011
Published: August 23, 2011

Citation
Jeffrey H. Shapiro, "Quasi-monochromatic bound on ultrashort light-pulse transmission through fog," Opt. Lett. 36, 3356-3358 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-17-3356


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Kedar and S. Arnon, IEEE Commun. Mag. 42 (5), S2 (2004). [CrossRef]
  2. J. H. Shapiro, in Laser Beam Propagation in the Atmosphere, J.W.Strohbehn, ed. (Springer-Verlag, 1978), pp. 171–222.
  3. R. M. Lerner and A. E. Holland, Proc. IEEE 58, 1547 (1970). [CrossRef]
  4. G. C. Mooradian, M. Geller, L. B. Stotts, D. H. Stephens, and R. A. Krautwald, Appl. Opt. 18, 429 (1979). [CrossRef] [PubMed]
  5. E. A. Bucher, Appl. Opt. 12, 2391 (1973). [CrossRef] [PubMed]
  6. W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Opt. Eng. 21, 775 (1982).
  7. E. A. Bucher and R. M. Lerner, Appl. Opt. 12, 2401 (1973). [CrossRef] [PubMed]
  8. S. Mujumdar, G. D. Dice, and A. Y. Elezabbi, Opt. Commun. 247, 19 (2005). [CrossRef]
  9. Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004). [CrossRef]
  10. U. Parali and D. R. Alexander, Opt. Express 18, 15155(2010). [CrossRef] [PubMed]
  11. D. R. Alexander, D. Doerr, J. Li, and H. Zhang, in Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’04, Vol.  6 (IEEE, 2004), pp. 3880–3883. [CrossRef]
  12. P. Corrigan, R. Martini, J. Cabaniss, and T. Chaffee, Proc. SPIE 6457, 64570X (2007). [CrossRef]
  13. R. S. Kennedy, Fading Dispersive Communication Channels (Wiley-Interscience, 1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited