OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 17 — Sep. 1, 2011
  • pp: 3380–3382

Higher-order interference of low-coherence optical fiber sensors

Jun Yang, Yonggui Yuan, Bing Wu, Ai Zhou, and Libo Yuan  »View Author Affiliations

Optics Letters, Vol. 36, Issue 17, pp. 3380-3382 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The higher-order interference noise that is caused by multireflection at the fiber sensor’s end surface in low- coherence fiber sensor array is proposed. The generation of the higher-order interference noise and its quantity and amplitude are theoretically analyzed. The second-order interference noises are experimentally demonstrated. The results show that the second-order noises arise in any sensor array composed of more than two sensors and the number of the second-order peaks is proportional to the third power of the sensor’s number. The ratio of the amplitude of the second-order noise to that of the signal peak is proportional to the reflectivity of the sensor’s end surface. In a sensor array, when the reflectivity is more than 10 5 , the amplitude of the second-order noise is higher than other noises and it becomes a main factor that determines the signal-to-noise ratio of the sensor arrays. Therefore, reducing the higher-order interference noise can improve the multiplexing capacity of the sensor array.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4230) Fiber optics and optical communications : Multiplexing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 29, 2011
Manuscript Accepted: July 20, 2011
Published: August 23, 2011

Jun Yang, Yonggui Yuan, Bing Wu, Ai Zhou, and Libo Yuan, "Higher-order interference of low-coherence optical fiber sensors," Opt. Lett. 36, 3380-3382 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Youngquist, S. Carr, and D. E. N. Davies, Opt. Lett. 12, 158 (1987). [CrossRef] [PubMed]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flottee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991). [CrossRef] [PubMed]
  3. L. B. Yuan and J. Yang, Opt. Lett. 30, 601 (2005). [CrossRef] [PubMed]
  4. K. Takada, A. Himeno, and K. Yukimatsu, Appl. Phys. Lett. 59, 2483 (1991). [CrossRef]
  5. W. V. Sorin and D. M. Baney, IEEE Photon. Technol. Lett. 4, 1404 (1992). [CrossRef]
  6. K. Takada, J. Lightwave Technol. 20, 1001 (2002). [CrossRef]
  7. X. L. Li, J. H. Han, X. Liu, and J. U. Kang, Appl. Opt. 47, 4833 (2008). [CrossRef] [PubMed]
  8. B. M. Oliver, Proc. IRE. 49, 1960 (1961).
  9. H. Hodara, Proc. IEEE. 53, 696 (1965). [CrossRef]
  10. P. R. Morkel, R. I. Laming, and D. N. Payne, Electron. Lett. 26, 96 (1990). [CrossRef]
  11. K. Takada, IEEE J. Quantum Electron. 34, 1098 (1998). [CrossRef]
  12. W. V. Sorin and D. M. Baney, IEEE Photon. Technol. Lett. 7, 917 (1995). [CrossRef]
  13. L. B. Yuan and J. Yang, Sens. Actuators. A 105, 40 (2003).
  14. J. Yang, L. B. Yuan, and W. Jin, Rev. Sci. Instrum. 78, 055106 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited