OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 17 — Sep. 1, 2011
  • pp: 3440–3442

Modeling of near-field optical diffraction from a subwavelength aperture in a thin conducting film

Jiu Hui Wu  »View Author Affiliations


Optics Letters, Vol. 36, Issue 17, pp. 3440-3442 (2011)
http://dx.doi.org/10.1364/OL.36.003440


View Full Text Article

Enhanced HTML    Acrobat PDF (474 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model, novel to our knowledge, to investigate the near-field optical diffraction from a subwavelength aperture in a thin conducting film is presented. A governing equation for the magnetic field distribution in an optical thin film based on the power flow theorem is derived for the first time. Thus all of the components of the electric and magnetic fields inside or outside the thin film with a subwavelength aperture embedded can be obtained by applying the Hankel transform accurately. Numerical computations are performed to illustrate the edge effect by an enhancement factor of 2.2 and the depolarization phenomenon of the transmission in terms of the distance from the film surface.

© 2011 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(260.1960) Physical optics : Diffraction theory
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 18, 2011
Revised Manuscript: July 30, 2011
Manuscript Accepted: August 1, 2011
Published: August 30, 2011

Citation
Jiu Hui Wu, "Modeling of near-field optical diffraction from a subwavelength aperture in a thin conducting film," Opt. Lett. 36, 3440-3442 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-17-3440


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Y. Hsu, Opt. Lett. 29, 2157 (2004). [CrossRef] [PubMed]
  2. D. P. Tsai and W. C. Lin, Appl. Phys. Lett. 77, 1413(2000). [CrossRef]
  3. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, Opt. Lett. 29, 174 (2004). [CrossRef] [PubMed]
  4. N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gérard, and F. de Fornel, Opt. Lett. 31, 2160 (2006). [CrossRef] [PubMed]
  5. H. A. Bethe, Phys. Rev. 66, 163 (1944). [CrossRef]
  6. C. J. Bouwkamp, Rep. Prog. Phys. 17, 35 (1954). [CrossRef]
  7. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007). [CrossRef] [PubMed]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002). [CrossRef] [PubMed]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998). [CrossRef]
  10. H. J. Lezec and T. Thio, Opt. Express 12, 3629 (2004). [CrossRef] [PubMed]
  11. J. H. Wu, A. Q. Liu, and H. H. Li, Opt. Lett. 31, 2438 (2006). [CrossRef] [PubMed]
  12. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  13. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, Europhys. Lett. 66, 41 (2004). [CrossRef]
  14. G. Ctistis, O. Schimek, P. Fumagalli, and J. J. Paggel, J. Appl. Phys. 99, 014505 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited