OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 17 — Sep. 1, 2011
  • pp: 3467–3469

High-efficiency frequency doubling of continuous-wave laser light

Stefan Ast, Ramon Moghadas Nia, Axel Schönbeck, Nico Lastzka, Jessica Steinlechner, Tobias Eberle, Moritz Mehmet, Sebastian Steinlechner, and Roman Schnabel  »View Author Affiliations

Optics Letters, Vol. 36, Issue 17, pp. 3467-3469 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm , yielding a total external conversion efficiency of 95 ± 1 % . The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

© 2011 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(060.5565) Fiber optics and optical communications : Quantum communications

ToC Category:
Nonlinear Optics

Original Manuscript: June 1, 2011
Revised Manuscript: August 9, 2011
Manuscript Accepted: August 10, 2011
Published: August 31, 2011

Stefan Ast, Ramon Moghadas Nia, Axel Schönbeck, Nico Lastzka, Jessica Steinlechner, Tobias Eberle, Moritz Mehmet, Sebastian Steinlechner, and Roman Schnabel, "High-efficiency frequency doubling of continuous-wave laser light," Opt. Lett. 36, 3467-3469 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M.-J. Li and D. A. Nolan, J. Lightwave Technol. 26, 1079 (2008). [CrossRef]
  2. M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, Opt. Lett. 35, 1665 (2010). [CrossRef] [PubMed]
  3. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, Nature 432, 482 (2004). [CrossRef] [PubMed]
  4. M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, Phys. Rev. Lett. 97, 183601 (2006). [CrossRef] [PubMed]
  5. K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod. Phys. 82, 1041 (2010). [CrossRef]
  6. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961). [CrossRef]
  7. T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, Phys. Rev. Lett. 48, 478 (1982). [CrossRef]
  8. J. Huang and P. Kumar, Phys. Rev. Lett. 68, 2153 (1992). [CrossRef] [PubMed]
  9. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, Opt. Lett. 27, 43 (2002). [CrossRef]
  10. H. Pan, H. Dong, H. Zeng, and W. Lu, Appl. Phys. Lett. 89, 191108 (2006). [CrossRef]
  11. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, Opt. Lett. 17, 640 (1992). [CrossRef] [PubMed]
  12. R. Paschotta, P. Kürz, R. Henking, S. Schiller, and J. Mlynek, Opt. Lett. 19, 1325 (1994). [CrossRef] [PubMed]
  13. T. Meier, B. Willke, and K. Danzmann, Opt. Lett. 35, 3742 (2010). [CrossRef] [PubMed]
  14. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, Phys. Rev. Lett. 104, 251102 (2010). [CrossRef] [PubMed]
  15. J.-J. Zondy, F. A. Camargo, T. Zanon, V. Petrov, and N. U. Wetter, Opt. Express 18, 4796 (2010). [CrossRef] [PubMed]
  16. R. Le Targat, J.-J. Zondy, and P. Lemonde, Opt. Commun. 247, 471 (2005). [CrossRef]
  17. M. Y. Vyatkin, A. V. Avtlokhin, A. G. Dronov, A. A. Krylov, R. L. Yagodkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Multi-watt average power 388 nm UV generation through frequency quadrupling of Yb/Er fiber laser sources,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2004).
  18. N. Lastzka, J. Steinlechner, S. Steinlechner, and R. Schnabel, Appl. Opt. 49, 5391 (2010). [CrossRef] [PubMed]
  19. K. Ehret, M. Frede, S. Ghazaryan, M. Hildebrandt, E.-A. Knabbe, D. Kracht, A. Lindner, J. List, T. Meier, N. Meyer, D. Notz, J. Redondo, A. Ringwald, G. Wiedemann, and B. Willke, Nucl. Instrum. Meth. Phys. Res. A 612, 83 (2009). [CrossRef]
  20. N. Lastzka, “Numerical modelling of classical and quantum effects in non-linear optical systems,” Ph.D. thesis (Gottfried Wilhelm Leibniz Universität Hannover, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited