OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 17 — Sep. 1, 2011
  • pp: 3524–3526

Polarization-independent on-axis light coupler for surface plasmon resonance using a concentric chirped grating

Sakoolkan Boonruang, Mahesh Pitchumani, and Waleed S. Mohammed  »View Author Affiliations

Optics Letters, Vol. 36, Issue 17, pp. 3524-3526 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (442 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel on-axis one-element polarization-independent light in- and out-coupling mechanism for surface plasmon resonance (SPR) is proposed. The system utilizes an integrated high-NA concentric chirped grating to both focus the incident light on the metallic film and collimate the reflected beam onto a CCD array to extract the SPR signal. With NA up to 1.47, a broad sensing dynamic range from n = 1 to 1.35 can be achieved. An analytical model is implemented to demonstrate the dependency of the radial location of the resonances on the detecting substance and its sensitivity to the change of the refractive index. The model shows a trend similar to rigorous ray-tracing calculations.

© 2011 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

Original Manuscript: July 26, 2011
Revised Manuscript: August 15, 2011
Manuscript Accepted: August 16, 2011
Published: September 1, 2011

Sakoolkan Boonruang, Mahesh Pitchumani, and Waleed S. Mohammed, "Polarization-independent on-axis light coupler for surface plasmon resonance using a concentric chirped grating," Opt. Lett. 36, 3524-3526 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on the Gratings (Springer-Verlag, 1986), Chap. 2.
  2. J. Homola, S. S. Yee, and G. Guaglitz, Sens. Actuators B 54, 3 (1999). [CrossRef]
  3. S. G. Nelson, K. S. Johnston, and S. S. Yee, Sens. Actuators B 35, 187 (1996). [CrossRef]
  4. J. Homola and S. S. Yee, Sens. Actuators B 51, 331 (1998). [CrossRef]
  5. B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979(2007). [CrossRef] [PubMed]
  6. C. Thirstrup, W. Zong, M. Borre, H. Neff, H. C. Pedersen, and G. Holzhueter, Sens. Actuators B 100, 298 (2004). [CrossRef]
  7. M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, Sens. Actuators B 90, 236 (2003). [CrossRef]
  8. M. C. Navarrete, N. Díaz-Herrera, A. González-Cano, and Ó. Esteban, Plasmonics 5, 7 (2010). [CrossRef]
  9. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995). [CrossRef]
  10. D. Marcuse, Theory of Dielectric Optical Waveguides(Academic, 1974), Chap. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited