OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 18 — Sep. 15, 2011
  • pp: 3539–3541

Direct experimental observation of giant Goos–Hänchen shifts from bandgap-enhanced total internal reflection

Yuhang Wan, Zheng Zheng, Weijing Kong, Ya Liu, Zhiting Lu, and Yusheng Bian  »View Author Affiliations

Optics Letters, Vol. 36, Issue 18, pp. 3539-3541 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Giant Goos–Hänchen (GH) shifts are experimentally demonstrated from a prism-coupled multilayer structure incorporating a one-dimensional photonic crystal (PC) through a bandgap-enhanced total internal reflection scheme. By combining the large phase changes near the bandgap of the PC and the low reflection loss of the total internal reflection, 2 orders of magnitude enhancement of the GH shift is realized with rather low extra optical loss, which might help to open the door toward many interesting applications for GH effects.

© 2011 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(260.6970) Physical optics : Total internal reflection
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: June 29, 2011
Revised Manuscript: August 11, 2011
Manuscript Accepted: August 13, 2011
Published: September 6, 2011

Yuhang Wan, Zheng Zheng, Weijing Kong, Ya Liu, Zhiting Lu, and Yusheng Bian, "Direct experimental observation of giant Goos–Hänchen shifts from bandgap-enhanced total internal reflection," Opt. Lett. 36, 3539-3541 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos and H. Hänchen, Ann. Phys. 436, 333 (1947). [CrossRef]
  2. J. Fan, A. Dogariu, and L. J. Wang, Opt. Express 11, 299 (2003). [CrossRef] [PubMed]
  3. H. M. Lai and S. W. Chan, Opt. Lett. 27, 680 (2002). [CrossRef]
  4. L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, Opt. Lett. 31, 1124 (2006). [CrossRef] [PubMed]
  5. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, Appl. Phys. Lett. 83, 2713 (2003). [CrossRef]
  6. Q. Cheng and T. J. Cui, J. Appl. Phys. 99, 066114 (2006). [CrossRef]
  7. A. Matthews and Y. Kivshar, Phys. Lett. A 372, 3098 (2008). [CrossRef]
  8. H. Gilles, S. Girard, and J. Hamel, Opt. Lett. 27, 1421 (2002). [CrossRef]
  9. H. G. L. Schwefel, W. Kohler, Z. H. Lu, J. Fan, and L. J. Wang, Opt. Lett. 33, 794 (2008). [CrossRef] [PubMed]
  10. X. Yin and L. Hesselink, Appl. Phys. Lett. 89, 261108 (2006). [CrossRef]
  11. Y. Wan, Z. Zheng, and J. Zhu, J. Opt. Soc. Am. B 28, 314 (2011). [CrossRef]
  12. T. Tamir and H. L. Bertoni, J. Opt. Soc. Am. 61, 1397 (1971). [CrossRef]
  13. W. M. Robertson and M. S. May, Appl. Phys. Lett. 74, 1800 (1999). [CrossRef]
  14. D. Felbacq, A. Moreau, and R. Smaâli, Opt. Lett. 28, 1633 (2003). [CrossRef] [PubMed]
  15. L. G. Wang and S. Y. Zhu, Opt. Lett. 31, 101 (2006). [CrossRef] [PubMed]
  16. V. V. Moskalenko, I. V. Soboleva, and A. A. Fedyanin, JETP Lett. 91, 382 (2010). [CrossRef]
  17. T. Sakata, H. Togo, and F. Shimokawa, Appl. Phys. Lett. 76, 2841 (2000). [CrossRef]
  18. K. Tsakmakidis, A. Boardman, and O. Hess, Nature 450, 397 (2007). [CrossRef] [PubMed]
  19. Y. Wan, Z. Zheng, and J. Zhu, Opt. Express 17, 21313 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited