OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 18 — Sep. 15, 2011
  • pp: 3669–3671

Theoretical and experimental demonstrations of a microfiber-based flexural disc accelerometer

G. Y. Chen, X. L. Zhang, G. Brambilla, and T. P. Newson  »View Author Affiliations

Optics Letters, Vol. 36, Issue 18, pp. 3669-3671 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (224 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The proof-of-concept demonstration of a microfiber-based flexural disc accelerometer is presented. The reduced microfiber size and bending radii give rise to high device compactness and responsivity. A flexural disc accelerometer manufactured from a 10 mm long microfiber showed a performance of 2.2 rad / g , with the responsivity expected to increase proportionally with the microfiber length.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 7, 2011
Revised Manuscript: August 17, 2011
Manuscript Accepted: August 22, 2011
Published: September 14, 2011

G. Y. Chen, X. L. Zhang, G. Brambilla, and T. P. Newson, "Theoretical and experimental demonstrations of a microfiber-based flexural disc accelerometer," Opt. Lett. 36, 3669-3671 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Hou, Y. Wu, and X. Zeng, Opt. Eng. 49, 014402 (2010). [CrossRef]
  2. T. Ke, T. Zhu, Y. Rao, and M. Deng, Microw. Opt. Technol. Lett. 52, 2531 (2010). [CrossRef]
  3. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, IEEE Sens. J. 8, 1292 (2008). [CrossRef]
  4. D. L. Gardner, T. Hofler, S. R. Baker, R. K. Yarber, and S. L. Garrett, J. Lightwave Technol. 5, 953 (1987). [CrossRef]
  5. R. D. Pechstedt and D. A. Jackson, Appl. Opt. 34, 3009(1995). [CrossRef] [PubMed]
  6. D. A. Brown and S. L. Garrett, Proc. SPIE 1367, 282 (1991). [CrossRef]
  7. Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, Meas. Sci. Technol. 18, 1763 (2007). [CrossRef]
  8. Y. Shindo, N. Tsuchida, K. Dobashi, and H. Kamata, in 12th International Conference on Optical Fiber Sensors, Vol. 16 of OSA Technical Digest Series (1997), p. 202.
  9. G. A. Cranch and P. J. Nash, J. Lightwave Technol. 18, 1233 (2000). [CrossRef]
  10. G. A. Gerges, T. P. Newson, and D. A. Jackson, Opt. Lett. 14, 1155 (1989). [CrossRef] [PubMed]
  11. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, IEEE Photonic Technol. Lett. 10, 1605 (1998). [CrossRef]
  12. H. Yu, S. Wang, J. Fu, M. Qiu, Y. Li, F. Gu, and L. Tong, Appl. Opt. 48, 4365 (2009). [CrossRef] [PubMed]
  13. A. J. Barlow and D. N. Payne, IEEE J. Quantum Electron. 19, 834 (1983). [CrossRef]
  14. A. W. Leissa, NASA Tech. Doc. Sp-160-N70-18461, 1969.
  15. G. Brambilla, J. Opt. 12, 043001 (2010). [CrossRef]
  16. N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, IEEE Photonic Technol. Lett. 20, 1264 (2008). [CrossRef]
  17. Y. Li and L. Tong, Opt. Lett. 33, 303 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited