OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 18 — Sep. 15, 2011
  • pp: 3672–3674

Fast single-photon avalanche diode arrays for laser Raman spectroscopy

Jordana Blacksberg, Yuki Maruyama, Edoardo Charbon, and George R. Rossman  »View Author Affiliations

Optics Letters, Vol. 36, Issue 18, pp. 3672-3674 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We incorporate newly developed solid-state detector technology into time-resolved laser Raman spectroscopy, demonstrating the ability to distinguish spectra from Raman and fluorescence processes. As a proof of concept, we show fluorescence rejection on highly fluorescent mineral samples willemite and spodumene using a 128 × 128 single-photon avalanche diode (SPAD) array with a measured photon detection efficiency of 5%. The sensitivity achieved in this new instrument architecture is comparable to the sensitivity of a technically more complicated system using a traditional photocathode-based imager. By increasing the SPAD active area and improving coupling efficiency, we expect further improvements in sensitivity by over an order of magnitude. We discuss the relevance of these results to in situ planetary instruments, where size, weight, power, and radiation hardness are of prime concern. The potential large-scale manufacturability of silicon SPAD arrays makes them prime candidates for future portable and in situ Raman instruments spanning numerous applications where fluorescence interference is problematic.

© 2011 Optical Society of America

OCIS Codes
(040.6070) Detectors : Solid state detectors
(300.6450) Spectroscopy : Spectroscopy, Raman
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: June 30, 2011
Revised Manuscript: July 26, 2011
Manuscript Accepted: August 21, 2011
Published: September 14, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Jordana Blacksberg, Yuki Maruyama, Edoardo Charbon, and George R. Rossman, "Fast single-photon avalanche diode arrays for laser Raman spectroscopy," Opt. Lett. 36, 3672-3674 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Nafie, J. Raman Spectrosc. 41, 1276 (2010). [CrossRef]
  2. R. Richards-Kortum and E. Sevick-Muraca, Annu. Rev. Phys. Chem. 47, 555 (1996). [CrossRef] [PubMed]
  3. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Chem. Rev. 99, 2957 (1999). [CrossRef]
  4. P. Vandenabeele, H. G. M. Edwards, and L. Moens, Chem. Rev. 107, 675 (2007). [CrossRef] [PubMed]
  5. N. Tarcea, T. Frosch, P. Rösch, M. Hilchenbach, T. Stuffler, S. Hofer, H. Thiele, R. Hochleitner, and J. Popp, Space Sci. Rev. 135, 281 (2008) [CrossRef]
  6. G. B. Courreges-Lacoste, B. Ahlers, and F. R. Perez, Spectrochim. Acta A 68, 1023 (2007). [CrossRef]
  7. A. Wang, B. L. Jolliff, and L. A. Haskin, “Investigating surface mineralogy, alteration processes, and biomarkers on Mars using laser Raman spectroscopy,” presented at the Sixth International Conference on Mars, Pasadena, Calif., July 20–25, 2003, abstract no. 3270.
  8. J. Blacksberg, G. Rossman, and A. Gleckler, Appl. Opt. 49, 4951 (2010). [CrossRef] [PubMed]
  9. S. K. Sharma, A. K. Misra, S. M. Clegg, J. E. Barefield, R. C. Wiens, and T. Acosta, Phil. Trans. R. Soc. A 368, 3167 (2010), and references therein. [CrossRef] [PubMed]
  10. L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, in IEEE International Solid-State Circuits Conference (IEEE, 2009), p. 40.
  11. Y. Maruyama and E. Charbon, in Proceedings of the Transducers’11 Conference (IEEE, 2011), p. 1180.
  12. M. Gaft and L. Nagli, Eur. J. Mineral. 21, 33 (2009). [CrossRef]
  13. M. Gaft, R. Reisfeld, and G. Panczer, Modern Luminescence Spectroscopy of Minerals and Materials (Springer, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited