OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 18 — Sep. 15, 2011
  • pp: 3690–3692

Maintaining maximum signal-to-noise ratio in uncooled vertical-cavity surface-emitting laser-based self-mixing sensors

Ranveer S. Matharu, Julien Perchoux, Russell Kliese, Yah Leng Lim, and Aleksandar D. Rakić  »View Author Affiliations

Optics Letters, Vol. 36, Issue 18, pp. 3690-3692 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a method for maintaining the maximum signal-to-noise ratio (SNR) of the signal obtained from the self-mixing sensor based on a vertical-cavity surface-emitting laser (VCSEL). It was found that the locus of the maximum SNR in the current-temperature space can be well approximated by a simple analytical model related to the temperature behavior of the VCSEL threshold current. The optimum sensor performance is achieved by tuning the laser current according to the proposed model, thus enabling the sensor to operate without temperature stabilization in a wide temperature range between 20 ° C and + 80 ° C .

© 2011 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.2020) Lasers and laser optics : Diode lasers
(140.7300) Lasers and laser optics : Visible lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 24, 2011
Manuscript Accepted: August 9, 2011
Published: September 15, 2011

Ranveer S. Matharu, Julien Perchoux, Russell Kliese, Yah Leng Lim, and Aleksandar D. Rakić, "Maintaining maximum signal-to-noise ratio in uncooled vertical-cavity surface-emitting laser-based self-mixing sensors," Opt. Lett. 36, 3690-3692 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Tucker, A. D. Rakic, C. J. O’Brien, and A. V. Zvyagin, Appl. Opt. 46, 611 (2007). [CrossRef]
  2. Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakic, Opt. Express 18, 11720 (2010). [CrossRef] [PubMed]
  3. T. Bosch, C. Bes, L. Scalise, and G. Plantier, in Encyclopedia of Sensors, Vol.  X, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, 2006), p. 1.
  4. S. Donati, L. Falzoni, and S. Merlo, IEEE Trans. Instrum. Meas. 45, 942 (1996). [CrossRef]
  5. L. Scalise, W. Steenbergen, and F. de Mul, Appl. Opt. 40, 4608 (2001). [CrossRef]
  6. J. Piprek, H. Wenzel, and G. Sztefka, IEEE Photon. Technol. Lett. 6, 139 (1994). [CrossRef]
  7. P. Mena, J. Morikuni, S.-M. Kang, A. Harton, and K. Wyatt, J. Lightwave Technol. 17, 865 (1999). [CrossRef]
  8. J. J. Dudley, D. L. Crawford, and J. E. Bowers, IEEE Photon. Technol. Lett. 4, 311 (1992). [CrossRef]
  9. D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993). [CrossRef]
  10. C. Chen, P. Leisher, A. Allerman, K. Geib, and K. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006). [CrossRef]
  11. K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995). [CrossRef]
  12. Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, IEEE J. Quantum Electron. 17, 1216 (1981). [CrossRef]
  13. G. Taylor and Q. Yang, IEEE J. Quantum Electron. 32, 1441 (1996). [CrossRef]
  14. R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, Opt. Lett. 35, 814 (2010). [CrossRef] [PubMed]
  15. K. B. Rochford and A. H. Rose, Opt. Lett. 20, 2105 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited