OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 19 — Oct. 1, 2011
  • pp: 3732–3734

Product of three Airy beams

Eugeny Abramochkin and Evgeniya Razueva  »View Author Affiliations


Optics Letters, Vol. 36, Issue 19, pp. 3732-3734 (2011)
http://dx.doi.org/10.1364/OL.36.003732


View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-dimensional field that is a product of three Airy beams is proposed and investigated. It is shown that the Fourier image of this field has a cubic phase and a radially symmetric intensity with a super-Gaussian decrease. Propagation of the product of three Airy beams in a Fresnel zone is investigated numerically.

© 2011 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: June 22, 2011
Revised Manuscript: August 12, 2011
Manuscript Accepted: August 24, 2011
Published: September 19, 2011

Citation
Eugeny Abramochkin and Evgeniya Razueva, "Product of three Airy beams," Opt. Lett. 36, 3732-3734 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-19-3732


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  2. O. Vallée and M. Soares, Airy Functions and Applications to Physics (Imperial College Press, 2004).
  3. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University, 1945).
  4. E. C. Titchmarsh, Introduction to the Theory of Fourier’s Integrals (Oxford University, 1937).
  5. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vols.  1–3 (McGraw-Hill, 1953).
  6. F. W. J. Olver, Asymptotics and Special Functions(Academic, 1974).
  7. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Problem (SIAM, 1981). [CrossRef]
  8. M. V. Berry, J. F. Nye, and F. J. Wright, Phil. Trans. R. Soc. A 291, 453 (1979). [CrossRef]
  9. M. V. Berry, Proc. R. Soc. A 463, 3055 (2007). [CrossRef]
  10. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007). [CrossRef] [PubMed]
  11. A. Torre, Appl. Phys. B 99, 775 (2010). [CrossRef]
  12. M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264(1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: AVI (3520 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited