OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 19 — Oct. 1, 2011
  • pp: 3843–3845

Adiabatic self-focusing in media with spatially variable nonlinearity

Luai Al Fares, Fabrice Devaux, and Mathieu Chauvet  »View Author Affiliations


Optics Letters, Vol. 36, Issue 19, pp. 3843-3845 (2011)
http://dx.doi.org/10.1364/OL.36.003843


View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical medium whose nonlinearity can be spatially adjusted is considered to study beam reshaping. The concept is applied to perform adiabatic self-focusing of broad beams. Experimental results are obtained in a photorefractive lithium niobate crystal where the self-focusing nonlinearity is controlled over propagation by a temperature gradient. As a demonstration, gradual self-focusing is shown to transform an incoming beam into an output circular spot 10 times smaller over a 2 cm long crystal submitted to a 30 ° C temperature gradient. Once formed, the adiabatic self-focused beam has inscribed a funnel waveguide in the crystal.

© 2011 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(260.5950) Physical optics : Self-focusing

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 23, 2011
Revised Manuscript: August 29, 2011
Manuscript Accepted: September 6, 2011
Published: September 26, 2011

Citation
Luai Al Fares, Fabrice Devaux, and Mathieu Chauvet, "Adiabatic self-focusing in media with spatially variable nonlinearity," Opt. Lett. 36, 3843-3845 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-19-3843


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Boardman and A. P. Sukhorukov, Soliton Driven Photonics (Kluwer, 2001). [CrossRef]
  2. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, and P. St. J. Russell, J. Opt. Soc. Am. B 19, 2148 (2002). [CrossRef]
  3. E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and J. Agranat, Appl. Phys. Lett. 91, 081105 (2007). [CrossRef]
  4. J. Safioui, F. Devaux, and M. Chauvet, Opt. Express 17, 22209 (2009). [CrossRef] [PubMed]
  5. A. V. Mamaev, M. Saffman, and A. A. Zozulya, Europhys Lett. 35, 25 (1996). [CrossRef]
  6. M. Segev, M. F. Shih, and G. Valley, J. Opt. Soc. Am. B 13, 706 (1996). [CrossRef]
  7. T. Bartholomaüs, K. Buse, C. Deuper, and E. Krätzig, Phys. Status Solidi A 142, K55 (1994). [CrossRef]
  8. I. Moerman, P. P. Van Daele, and P. M. Demeester, IEEE J. Sel. Top. Quantum Electron. 3, 1308 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited