OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 19 — Oct. 1, 2011
  • pp: 3924–3926

Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range

M. Schulze, D. Lehr, M. Helgert, E.-B. Kley, and A. Tünnermann  »View Author Affiliations

Optics Letters, Vol. 36, Issue 19, pp. 3924-3926 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (565 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present transmission increased fused silica lenses produced by using self-organized antireflective structures for which we developed an efficient manufacturing process. The spectral transmission measured over the whole lens aperture shows a significant transmission enhancement of up to 3.5% in the UV range. Local measurements on the lens’s surface reveal a strongly reduced reflection of below 0.1% for 300 nm wavelength, which is homogeneous over the whole lens. Further, the lenses show a broadband spectral antireflection behavior. For 600 nm wavelength the reflection was measured at about 1%.

© 2011 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(220.3630) Optical design and fabrication : Lenses
(260.7190) Physical optics : Ultraviolet
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Design and Fabrication

Original Manuscript: July 15, 2011
Revised Manuscript: September 7, 2011
Manuscript Accepted: September 9, 2011
Published: September 30, 2011

M. Schulze, D. Lehr, M. Helgert, E.-B. Kley, and A. Tünnermann, "Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range," Opt. Lett. 36, 3924-3926 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Smakula, “Verfahren zur Erhöhung der Lichtdurchlässigkeit optischer Teile durch Erniedrigung des Brechungsexponenten an den Grenzflächen dieser optischen Teile,” German patent DE685767 (November 1, 1935).
  2. C. G. Bernhard and W. H. Miller, Acta Physiologica Scandinavica 56, 385 (1962). [CrossRef] [PubMed]
  3. P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973). [CrossRef]
  4. Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999). [CrossRef]
  5. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999). [CrossRef]
  6. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008). [CrossRef] [PubMed]
  7. H. Fang, Y. Wu, J. Zhao, and J. Zhu, Nanotechnology 17, 3768 (2006). [CrossRef]
  8. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, Opt. Express 15, 14793 (2007). [CrossRef] [PubMed]
  9. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, Opt. Express 15, 13108 (2007). [CrossRef] [PubMed]
  10. M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, Proc. SPIE 6883, 68830N (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited