OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 19 — Oct. 1, 2011
  • pp: 3945–3947

Cavity-based Fabry–Perot probe with protruding subwavelength aperture

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, E. V. Pustovalov, and A. V. Nepomnyashchii  »View Author Affiliations

Optics Letters, Vol. 36, Issue 19, pp. 3945-3947 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate numerically and experimentally the possibility of development of a cavity-based probe for near-field optical microscopy systems based on a fiber Fabry–Perot interferometer with a subwavelength protruding aperture. It was shown that the probe provides a spatial resolution of no worse than λ / 37 for λ = 1550 nm .

© 2011 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.2230) Diffraction and gratings : Fabry-Perot
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: June 8, 2011
Revised Manuscript: August 12, 2011
Manuscript Accepted: September 6, 2011
Published: September 30, 2011

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, E. V. Pustovalov, and A. V. Nepomnyashchii, "Cavity-based Fabry–Perot probe with protruding subwavelength aperture," Opt. Lett. 36, 3945-3947 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl and W. D. M. Lanz, Appl. Phys. Lett. 44, 651(1984). [CrossRef]
  2. F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001). [PubMed]
  3. L. K. Kapkiai, D. Moore-Nichols, J. Carnell, and J. R. Krogmeier, Appl. Phys. Lett. 84, 3750 (2004). [CrossRef]
  4. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett. 93, 200801 (2004). [CrossRef] [PubMed]
  5. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003). [CrossRef] [PubMed]
  6. K. Sendur, C. Peng, and W. Challener, Phys. Rev. Lett. 94, 043901 (2005). [CrossRef] [PubMed]
  7. J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 073111 (2010). [CrossRef]
  8. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000). [CrossRef]
  9. T. Yatsui, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 73, 2090 (1998). [CrossRef]
  10. Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011). [CrossRef]
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).
  12. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972). [CrossRef]
  13. T. Pangaribuan, K. Yamada, Sh. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited