OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 2 — Jan. 15, 2011
  • pp: 112–114

Peregrine soliton generation and breakup in standard telecommunications fiber

Kamal Hammani, Bertrand Kibler, Christophe Finot, Philippe Morin, Julien Fatome, John M. Dudley, and Guy Millot  »View Author Affiliations

Optics Letters, Vol. 36, Issue 2, pp. 112-114 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present experimental and numerical results showing the generation and breakup of the Peregrine soliton in standard telecommunications fiber. The impact of nonideal initial conditions is studied through direct cutback measurements of the longitudinal evolution of the emerging soliton dynamics and is shown to be associated with the splitting of the Peregrine soliton into two subpulses, with each subpulse itself exhibiting Peregrine soliton characteristics. Experimental results are in good agreement with simulations.

© 2011 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 29, 2010
Manuscript Accepted: November 22, 2010
Published: January 5, 2011

Kamal Hammani, Bertrand Kibler, Christophe Finot, Philippe Morin, Julien Fatome, John M. Dudley, and Guy Millot, "Peregrine soliton generation and breakup in standard telecommunications fiber," Opt. Lett. 36, 112-114 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007). [CrossRef] [PubMed]
  2. J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010). [CrossRef]
  3. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009). [CrossRef] [PubMed]
  4. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986). [CrossRef]
  5. K. B. Dysthe and K. Trulsen, Phys. Scripta T82, 48 (1999). [CrossRef]
  6. N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009). [CrossRef]
  7. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010). [CrossRef]
  8. Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987). [CrossRef]
  9. S. Wabnitz and N. Akhmediev, Opt. Commun. 283, 1152 (2010). [CrossRef]
  10. V. I. Shrira and V. V. Geogjaev, J. Eng. Math. 67, 11 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited