OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 2 — Jan. 15, 2011
  • pp: 217–219

Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion

Peter T. Rakich, Zheng Wang, and Paul Davids  »View Author Affiliations

Optics Letters, Vol. 36, Issue 2, pp. 217-219 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (816 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that eigenmodes of dielectric optical waveguides exert surface dilation forces on waveguide boundaries owing to radiation pressure, and we develop an exact scaling law relating modal dispersion of an arbitrary dielectric waveguide to the magnitude of optical forces generated by radiation pressure. This result points to highly dispersive waveguides as an optimal choice for the generation of large optical forces in nano-optomechanical systems. Exact agreement with ab initio calculations is demonstrated.

OCIS Codes
(130.2790) Integrated optics : Guided waves
(200.4880) Optics in computing : Optomechanics
(290.5900) Scattering : Scattering, stimulated Brillouin
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: August 23, 2010
Revised Manuscript: November 24, 2010
Manuscript Accepted: November 30, 2010
Published: January 12, 2011

Peter T. Rakich, Zheng Wang, and Paul Davids, "Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion," Opt. Lett. 36, 217-219 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Povinelli, M. Loncar, M. Ibanescu, E. Smythe, S. Johnson, F. Capasso, and J. Joannopoulos, Opt. Lett. 30, 3042 (2005). [CrossRef] [PubMed]
  2. A. Mizrahi and L. Schachter, Opt. Lett. 32, 692 (2007). [CrossRef] [PubMed]
  3. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, Nat. Photon. 1, 416 (2007). [CrossRef]
  4. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, Nat. Photon. 1, 658 (2007). [CrossRef]
  5. M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, Nature 456, 480 (2008). [CrossRef] [PubMed]
  6. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, Nat. Nanotechnol. 4, 510 (2009). [CrossRef] [PubMed]
  7. P. T. Rakich, M. A. Popovic, and Z. Wang, Opt. Express 17, 18116 (2009). [CrossRef] [PubMed]
  8. P. T. Rakich, P. Davids, and Z. Wang, Opt. Express 18, 14439 (2010). [CrossRef] [PubMed]
  9. M. Tomes and T. Carmon, Phys. Rev. Lett. 102, 113601 (2009). [CrossRef] [PubMed]
  10. P. Dainese, P. Russell, N. Joly, J. Knight, G. S. Wiederhecker, H. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006). [CrossRef]
  11. E. M. Lifshitz, D. Landau, and L. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, 1984).
  12. M. Mansuripur, Opt. Express 12, 5375 (2004). [CrossRef] [PubMed]
  13. J. D. Joannopoulos, S. Johnson, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited