OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 20 — Oct. 15, 2011
  • pp: 4017–4019

In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy

Sung-Liang Chen, Zhixing Xie, Paul L. Carson, Xueding Wang, and L. Jay Guo  »View Author Affiliations

Optics Letters, Vol. 36, Issue 20, pp. 4017-4019 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (360 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We recently proposed photoacoustic correlation spectroscopy (PACS) and demonstrated a proof-of-concept experiment. Here we use the technique for in vivo flow speed measurement in capillaries in a chick embryo model. The photoacoustic microscopy system is used to render high spatial resolution and high sensitivity, enabling sufficient signals from single red blood cells. The probe beam size is calibrated by a blood-mimicking phantom. The results indicate the feasibility of using PACS to study flow speeds in capillaries.

© 2011 Optical Society of America

OCIS Codes
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 21, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 13, 2011
Published: October 6, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Sung-Liang Chen, Zhixing Xie, Paul L. Carson, Xueding Wang, and L. Jay Guo, "In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy," Opt. Lett. 36, 4017-4019 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Martin and A. Roorda, Exp. Eye Res. 88, 356 (2009). [CrossRef]
  2. J. Tam, P. Tiruveedhula, and A. Roorda, Biomed. Opt. Express 2, 781 (2011). [CrossRef] [PubMed]
  3. S. Wolf, O. Arend, K. Schulte, T. H. Ittel, and M. Reim, Hypertension 23, 464 (1994). [PubMed]
  4. P. Vennemann, R. Lindken, and J. Westerweel, Exp. Fluids 42, 495 (2007). [CrossRef]
  5. H. Fang, K. Maslov, and L. V. Wang, Phys. Rev. Lett. 99, 184501 (2007). [CrossRef] [PubMed]
  6. H. Fang and L. V. Wang, Opt. Lett. 34, 671 (2009). [CrossRef] [PubMed]
  7. S.-L. Chen, T. Ling, S.-W. Huang, H. W. Baac, and L. J. Guo, Opt. Lett. 35, 1200 (2010). [CrossRef] [PubMed]
  8. J. Yao, K. I. Maslov, Y. Shi, L. A. Taber, and L. V. Wang, Opt. Lett. 35, 1419 (2010). [CrossRef] [PubMed]
  9. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, Opt. Lett. 34, 1771 (2009). [CrossRef] [PubMed]
  10. E. Haustein and P. Schwille, Curr. Opin. Struct. Biol. 14, 531 (2004). [CrossRef] [PubMed]
  11. R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, J. Cell Sci. 113, 3921 (2000). [PubMed]
  12. Y.-C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, Opt. Express 16, 12640 (2008). [PubMed]
  13. V. M. Belichenko and K. A. Shoshenko, Russ. J. Dev. Biol. 40, 95 (2009). [CrossRef]
  14. H. C. Yalcin, A. Shekhar, A. A. Rane, and J. T. Butcher, J. Visualized Exp. 44, doi:10.3791/2154 (2010). [CrossRef]
  15. P. Horn, M. M. Cortese-Krott, S. Keymel, I. Kumara, S. Burghoff, J. Schrader, M. Kelm, and P. Kleinbongard, Free Radic. Res. Commun. 45, 653 (2011). [CrossRef]
  16. R. Baumann and H.-J. Meuer, Physiol. Rev. 72, 941 (1992). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited