OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 20 — Oct. 15, 2011
  • pp: 4041–4043

Comparison between radiative transfer theory and the simplified spherical harmonics approximation for a semi-infinite geometry

André Liemert and Alwin Kienle  »View Author Affiliations

Optics Letters, Vol. 36, Issue 20, pp. 4041-4043 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, the third-order simplified spherical harmonics equations ( SP 3 ), an approximation of the radiative transfer equation, are solved for a semi-infinite geometry considering the exact simplified spherical harmonics boundary conditions. The obtained Green’s function is compared to radiative transfer calculations and the diffusion theory. In general, it is shown that the SP 3 equations provide better results than the diffusion approximation in media with high absorption coefficient values but no improvement is found for small distances to the source.

© 2011 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 21, 2011
Revised Manuscript: August 22, 2011
Manuscript Accepted: September 6, 2011
Published: October 11, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

André Liemert and Alwin Kienle, "Comparison between radiative transfer theory and the simplified spherical harmonics approximation for a semi-infinite geometry," Opt. Lett. 36, 4041-4043 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Klose and E. W. Larsen, J. Comput. Phys. 220, 441 (2006). [CrossRef]
  2. J. Tian, K. Liu, Y. Lu, C. Chin, X. Yang, S. Zhu, D. Han, J. Feng, X. Ma, and Z. Chang, Opt. Express 18, 20988 (2010). [CrossRef] [PubMed]
  3. L. D. Montejo, H. K. K. Kim, and A. H. Hielscher, Proc. SPIE 7896, 78960J (2011). [CrossRef]
  4. K. M. Case and P. F. Zweifel, Linear Transport Theory(Addison-Wesley, 1967).
  5. M. Frank, A. Klar, E. W. Larsen, and S. Yasuda, J. Comput. Phys. 226, 2289 (2007). [CrossRef]
  6. M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, Phys. Med. Biol. 54, 2493 (2009). [CrossRef] [PubMed]
  7. Y. Lu, B. Zuh, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, Phys. Med. Biol. 55, 4625 (2010). [CrossRef] [PubMed]
  8. J. Bouza-Domínguez and Y. Bérubé-Lauzière, Appl. Opt. 49, 1414 (2010). [CrossRef] [PubMed]
  9. A. Liemert and A. Kienle, Opt. Lett. 35, 3507 (2010). [CrossRef] [PubMed]
  10. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue (SPIE, 2010). [CrossRef]
  11. A. Kienle and M. S. Patterson, J. Opt. Soc. Am. A 14, 246 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited