OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 20 — Oct. 15, 2011
  • pp: 4101–4103

Accelerated boundary element method for diffuse optical imaging

J. Elisee, M. Bonnet, and S. Arridge  »View Author Affiliations

Optics Letters, Vol. 36, Issue 20, pp. 4101-4103 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The boundary element method (BEM) is a useful tool in diffuse optical imaging (DOI) when modelling large optical regions whose parameters are piecewise constant, but are computationally expensive. We present here an acceleration technique, the single-level fast multipole method, for a highly lossy medium. The enhanced practicability of the BEM in DOI is demonstrated through test examples on single-layer problems, where order of magnitude reduction factors on solution time are achieved and on a realistic three-layer model of the neonatal head. Our experimental results agree very closely with theoretical predictions of computational complexity.

© 2011 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Imaging Systems

Original Manuscript: July 27, 2011
Revised Manuscript: September 11, 2011
Manuscript Accepted: September 13, 2011
Published: October 14, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

J. Elisee, M. Bonnet, and S. Arridge, "Accelerated boundary element method for diffuse optical imaging," Opt. Lett. 36, 4101-4103 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. DelpyMed. Phys. 20, 299 (1993). [CrossRef] [PubMed]
  2. V. Y. Soloviev, Med. Phys. 33, 4176 (2006). [CrossRef] [PubMed]
  3. J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, Phys. Rev. E 64, 051917 (2001). [CrossRef]
  4. J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, S. Arridge, and J. Ripoll, Phys. Med. Biol. 51, 497 (2006). [CrossRef] [PubMed]
  5. A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, Inverse Probl. 22, 1509 (2006). [CrossRef]
  6. S. Chaillat, M. Bonnet, and J. F. Semblat, Geophys. J. Int. 177, 509 (2009). [CrossRef]
  7. R. Coifman, V. Rokhlin, and S. Wandzura, IEEE Antennas Propag. Mag. 35, 7 (1993). [CrossRef]
  8. N. Geng, A. Sullivan, and L. Carin, IEEE Trans. Antennas Propagat. 49, 740 (2001). [CrossRef]
  9. L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325(1987). [CrossRef]
  10. K. E. Schmidt and M. A. Lee, J. Stat. Phys. 63, 1223 (1991). [CrossRef]
  11. E. Darve, J. Comput. Phys. 160, 195 (2000). [CrossRef]
  12. M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).
  13. V. I. Lebedev and D. N. Laikov, Doklady Mathematics 59, 477 (1999).
  14. E. Darve, SIAM J. Numer. Anal. 38, 98 (2001). [CrossRef]
  15. A. Tizzard, L. Horesh, R. J. Yerworth, D. S. Holder, and R. H. Bayford, Physiol. Meas. 26, S251 (2005). [CrossRef] [PubMed]
  16. J. Elisee, A. Gibson, and S. Arridge, IEEE Trans. Biomed. Eng. 57, 2737 (2010). [CrossRef]
  17. J. Elisee, A. Gibson, and S. Arridge, Biomed. Opt. Express 2, 568 (2011). [CrossRef] [PubMed]
  18. N. A. Gumerov and R. Duraiswami, J. Comput. Phys. 227, 8290 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited