OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 20 — Oct. 15, 2011
  • pp: 4110–4112

Entanglement and classical polarization states

Xiao-Feng Qian and J. H. Eberly  »View Author Affiliations


Optics Letters, Vol. 36, Issue 20, pp. 4110-4112 (2011)
http://dx.doi.org/10.1364/OL.36.004110


View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We identify classical light fields as physical examples of nonquantum entanglement. A natural measure of degree of polarization emerges from this identification, and we discuss its systematic application to any optical field, whether beamlike or not.

© 2011 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: August 24, 2011
Revised Manuscript: September 23, 2011
Manuscript Accepted: September 26, 2011
Published: October 14, 2011

Citation
Xiao-Feng Qian and J. H. Eberly, "Entanglement and classical polarization states," Opt. Lett. 36, 4110-4112 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-20-4110


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. G. Stokes, Trans. Cambridge Philos. Soc. 9, 399 (1852).
  2. Following Zernike’s seminal insight that the unobservably rapid variations in optical fields mandated a statistical approach, Wolf developed a comprehensive rigorous formulation of polarization as a branch of statistical coherence theory. See E. Wolf, Nuovo Cim. 13, 1165 (1959), as well as a modern overview in . [CrossRef]
  3. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).
  4. E. A. Ash and G. Nicholls, Nature 237, 510 (1972). [CrossRef] [PubMed]
  5. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984). [CrossRef]
  6. J. C. Petrucelli, N. J. Moore, and M. A. Alonso, Opt. Commun. 283, 4457 (2010). [CrossRef]
  7. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  8. J. C. Samson, Geophys. J. R. Astron. Soc. 34, 403 (1973). [CrossRef]
  9. T. Carozzi, R. Karlsson, and J. Bergman, Phys. Rev. E 61, 2024 (2000). [CrossRef]
  10. A. B. Klimov, L. L. Sánchez-Soto, E. C. Yustas, J. Söderholm, and G. Björk, Phys. Rev. A 72, 033813 (2005). [CrossRef]
  11. A. Luis, Opt. Commun. 253, 10 (2005). [CrossRef]
  12. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002). [CrossRef]
  13. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, Opt. Commun. 248, 333 (2004). [CrossRef]
  14. M. S. Kumar and R. Simon, Opt. Commun. 88, 464 (1992). [CrossRef]
  15. B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, Phys. Rev. Lett. 104, 023901(2010). [CrossRef] [PubMed]
  16. P. A. Bushev, V. P. Karassiov, A. V. Masalov, and A. A. Putilin, Opt. Spectrosc. 91, 526 (2001). [CrossRef]
  17. T. Tsegaye, J. Söderholm, M. Atatüre, A. Trifonov, G. Björk, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. Lett. 85, 5013 (2000). [CrossRef] [PubMed]
  18. A. B. Klimov, G. Björk, J. Söderholm, L. S. Madsen, M. Lassen, U. L. Andersen, J. Heersink, R. Dong, Ch. Marquardt, G. Leuchs, and L. L. Sánchez-Soto, Phys. Rev. Lett. 105, 153602 (2010). [CrossRef]
  19. T. S. Iskhakov, M. V. Chekhova, G. O. Rytikov, and G. Leuchs, Phys. Rev. Lett. 106, 113602 (2011). [CrossRef] [PubMed]
  20. D. N. Klyshko, Phys. Lett. A 163, 349 (1992). [CrossRef]
  21. D. N. Klyshko, J. Exp. Theor. Phys. 84, 1065 (1997). [CrossRef]
  22. A. Picozzi, Opt. Lett. 29, 1653 (2004). [CrossRef] [PubMed]
  23. X. F. Qian and J. H. Eberly, arXiv:1009.5622 (2010).
  24. A. Ekert and P. L. Knight, Am. J. Phys. 63, 415 (1995). [CrossRef]
  25. J. H. Eberly, Laser Phys. 16, 921 (2006). [CrossRef]
  26. C. K. Law, I. A. Walmsley, and J. H. Eberly, Phys. Rev. Lett. 84, 5304 (2000). [CrossRef] [PubMed]
  27. C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903(2004). [CrossRef] [PubMed]
  28. M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, Phys. Rev. Lett. 94, 220501 (2005). [CrossRef] [PubMed]
  29. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, Phys. Rev. Lett. 95, 240501 (2005). [CrossRef] [PubMed]
  30. M. V. Fedorov, M. A. Efremov, A. E. Kazakov, K. W. Chan, C. K. Law, and J. H. Eberly, Phys. Rev. A 72, 032110 (2005). [CrossRef]
  31. The eigenvalue equations are just 3×3 matrix equations: Wlab|uj〉=κj2|uj〉 and Wfcn|fj〉=κj2|fj〉.
  32. For example, see M. V. Fedorov, P. A. Volkov, and J. M. Mikhailova, Phys. Rev. A 84, 032335 (2011). [CrossRef]
  33. See R. Grobe, K. Rzążewski, and J. H. Eberly, J. Phys. B 27, L503 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited