OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 20 — Oct. 15, 2011
  • pp: 4113–4115

Nondegenerate mirrorless oscillation in silicon waveguide

Yan Yan, Lin Zhang, and Alan Willner  »View Author Affiliations

Optics Letters, Vol. 36, Issue 20, pp. 4113-4115 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose nondegenerate four-wave mixing mirrorless oscillation in a multimode silicon nonlinear waveguide. Thanks to the large modal dispersion between two spatial modes caused by the high-index-contrast waveguide structure, two counterpropagating pumps of one spatial mode can generate two new optical waves of the other spatial mode at different frequencies. The phase-matching condition can be satisfied with the higher-order modes involved; therefore, frequencies of the newly generated light can be tuned by simply changing the pump frequency. The threshold power and conversion efficiency of the proposed mirrorless oscillation are investigated under different waveguide parameters.

© 2011 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.4910) Optical devices : Oscillators
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: August 8, 2011
Revised Manuscript: September 14, 2011
Manuscript Accepted: September 17, 2011
Published: October 14, 2011

Yan Yan, Lin Zhang, and Alan Willner, "Nondegenerate mirrorless oscillation in silicon waveguide," Opt. Lett. 36, 4113-4115 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv and D. M. Pepper, Opt. Lett. 1, 16 (1977). [CrossRef] [PubMed]
  2. S. Pitois, A. Picozzil, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005). [CrossRef]
  3. D. M. Bloom, P. F. Liao, and N. P. Economou, Opt. Lett. 2, 58 (1978). [CrossRef] [PubMed]
  4. A. Picozzi, M. Haelterman, S. Pitois, and G. Millot, Phys. Rev. Lett. 92, 143906 (2004). [CrossRef] [PubMed]
  5. C. Canalias and V. Pasiskevicius, Nat. Photon. 1, 459 (2007). [CrossRef]
  6. A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999). [CrossRef]
  7. R. H. Stolen, IEEE J. Quantum Electron. 11, 100 (1975). [CrossRef]
  8. S. Bian and M. Kuzyk, Appl. Phys. Lett. 84, 858 (2004). [CrossRef]
  9. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 16, 200 (2010). [CrossRef]
  10. A. D. Bristow, N. Rotenberg, and H. M. Driel, Appl. Phys. Lett. 90, 191104 (2007). [CrossRef]
  11. A. V. Shahraam and T. M. Monro, Opt. Express 17, 2298 (2009). [CrossRef]
  12. Q. Lin, J. Zhang, G. Piredda, R. W. Boyed, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007). [CrossRef]
  13. Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007). [CrossRef] [PubMed]
  14. Y. Ja, Opt. Quantum Electron. 15, 529 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited