OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 21 — Nov. 1, 2011
  • pp: 4152–4154

Fluoride glass Raman fiber laser at 2185 nm

Vincent Fortin, Martin Bernier, Julien Carrier, and Réal Vallée  »View Author Affiliations

Optics Letters, Vol. 36, Issue 21, pp. 4152-4154 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the first Raman laser based on a fluoride glass optical fiber. The Raman fiber laser was pumped by a 9.6 W Tm 3 + :silica CW fiber laser operating at a wavelength of 1940 nm . A maximum output power of 580 mW was measured at 2185.1 nm , corresponding to a frequency shift of 579 cm 1 ( 17.37 THz ). We observed a threshold power of 3.8 W and a low power slope efficiency of 29% with respect to the launched pump power. Using those results and the known fiber parameters, we estimated a Raman gain peak value of 3.52 * 10 14 m / W , which is lower than the previously reported values.

© 2011 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 19, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: September 22, 2011
Published: October 19, 2011

Vincent Fortin, Martin Bernier, Julien Carrier, and Réal Vallée, "Fluoride glass Raman fiber laser at 2185 nm," Opt. Lett. 36, 4152-4154 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Gur’yanov, Quantum Electron. 35, 435 (2005). [CrossRef]
  2. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, Opt. Lett. 32, 1848 (2007). [CrossRef] [PubMed]
  3. D. Gruppi, M. Eichhorn, A. Hirth, and P. Pfeiffer, IEEE J. Quantum Electron. 45, 446 (2009). [CrossRef]
  4. S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006). [CrossRef]
  5. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, Opt. Lett. 32, 454 (2007). [CrossRef] [PubMed]
  6. M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, Opt. Express 17, 18887 (2009). [CrossRef]
  7. J.-C. Bouteiller, IEEE Photon. Technol. Lett. 15, 1698(2003). [CrossRef]
  8. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, Opt. Lett. 35, 3288 (2010). [CrossRef] [PubMed]
  9. M. Rini, I. Cristiani, and V. Degiorgio, IEEE J. Quantum Electron. 36, 1117 (2000). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.(Academic, 2001).
  11. P. S. André, H. J. Kalinowski, L. M. Borghesi Jr., and J. L. Pinto, Proc. SPIE 5036, 518 (2003). [CrossRef]
  12. R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276(1973). [CrossRef]
  13. T. Mizunami, H. Iwashita, and K. Takagi, Opt. Commun. 97, 74 (1993). [CrossRef]
  14. A. Saïssy, J. Botineau, L. Macon, and G. Mazé, J. Phys. Lett. 46, L-289 (1985). [CrossRef]
  15. Y. Durteste, M. Monerie, and P. Lamouler, Electron. Lett. 21, 723 (1985). [CrossRef]
  16. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, Opt. Lett. 36, 1104 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited