OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 36, Iss. 21 — Nov. 1, 2011
  • pp: 4170–4172

Variable-diameter refractive beam shaping with freeform optical surfaces

Paul J. Smilie and Thomas J. Suleski  »View Author Affiliations


Optics Letters, Vol. 36, Issue 21, pp. 4170-4172 (2011)
http://dx.doi.org/10.1364/OL.36.004170


View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a refractive two-element system that converts the Gaussian irradiance of an incident laser beam into a nominally flat-top output spot at a given distance with the capability to vary the spot diameter. The elements are high-order freeform surfaces that, when laterally translated, form a variable composite beam shaper. The general approach for determining the required freeform surfaces is discussed, and example design results are presented.

© 2011 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(220.1920) Optical design and fabrication : Diamond machining
(220.2740) Optical design and fabrication : Geometric optical design
(080.4225) Geometric optics : Nonspherical lens design

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: August 18, 2011
Revised Manuscript: September 22, 2011
Manuscript Accepted: September 23, 2011
Published: October 19, 2011

Citation
Paul J. Smilie and Thomas J. Suleski, "Variable-diameter refractive beam shaping with freeform optical surfaces," Opt. Lett. 36, 4170-4172 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-21-4170


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. R. Frieden, Appl. Opt. 4, 1400 (1965). [CrossRef]
  2. J. L. Kreuzer, “Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface,” U.S. patent 3,476,463 (November 4, 1969).
  3. P. W. Rhodes and D. L. Shealy, Appl. Opt. 19, 3545 (1980). [CrossRef] [PubMed]
  4. W. Jiang, D. L. Shealy, and J. C. Martin, Proc. SPIE 2000, 64(1993). [CrossRef]
  5. J. A. Hoffnagle and C. M. Jefferson, Opt. Eng. 42, 3090(2003). [CrossRef]
  6. S. Zhang, G. Neil, and M. Shinn, Opt. Express 11, 1942(2003). [CrossRef] [PubMed]
  7. A. Laskin, G. Williams, and A. Demidovich, Proc. SPIE 7579, 75790N (2010). [CrossRef]
  8. L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent 3,305,294 (February 21, 1967).
  9. I. A. Palusinski, J. M. Sasian, and J. E. Greivenkamp, Appl. Opt. 38, 86 (1999). [CrossRef]
  10. VirtualLab User’s Manual (v. 5.0.0) (LightTrans GmbH, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited