Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Kr-PLIF for scalar imaging in supersonic flows

Not Accessible

Your library or personal account may give you access

Abstract

Experiments were performed to explore the use of two-photon planar laser-induced fluorescence (PLIF) of krypton gas for applications of scalar imaging in supersonic flows. Experiments were performed in an underexpanded jet of krypton, which exhibited a wide range of conditions, from subsonic to hypersonic. Excellent signal-to-noise ratios were obtained, showing the technique is suitable for single-shot imaging. The data were used to infer the distribution of gas density and temperature by correcting the fluorescence signal for quenching effects and using isentropic relations. The centerline variation of the density and temperature from the experiments agree very well with those predicted with an empirical correlation and a CFD simulation (FLUENT). Overall, the high signal levels and quantifiable measurements indicate that Kr-PLIF could be an effective scalar marker for use in supersonic and hypersonic flow applications.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Demonstration of a two-line Kr PLIF thermometry technique for gaseous combustion applications

Dominic Zelenak and Venkateswaran Narayanaswamy
Opt. Lett. 44(2) 367-370 (2019)

Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO

P. H. Paul, M. P. Lee, and R. K. Hanson
Opt. Lett. 14(9) 417-419 (1989)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.