OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 21 — Nov. 1, 2011
  • pp: 4296–4298

Oxygen vacancy density-dependent transformation from infrared to Raman active vibration mode in SnO 2 nanostructures

T. H. Li, L. Z. Liu, X. X. Li, X. L. Wu, H. T. Chen, and Paul K. Chu  »View Author Affiliations

Optics Letters, Vol. 36, Issue 21, pp. 4296-4298 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Raman spectra acquired from spherical, cubic, and cuboid SnO 2 nanocrystals (NCs) reveal a morphologically independent Raman mode at 302 cm 1 . The frequency of this mode is slightly affected by the NC size, but the intensity increases obviously with decreasing NC size. By considering the dipole changes induced by oxygen vacancies and derivation based on the density functional theory and phonon confinement model, an oxygen vacancy density larger than 6% is shown to be responsible for the transformation of the IR to Raman active vibration mode, and the intensity enhancement is due to strong phonon confinement.

© 2011 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(290.5860) Scattering : Scattering, Raman

ToC Category:

Original Manuscript: September 6, 2011
Revised Manuscript: September 30, 2011
Manuscript Accepted: September 30, 2011
Published: November 1, 2011

T. H. Li, L. Z. Liu, X. X. Li, X. L. Wu, H. T. Chen, and Paul K. Chu, "Oxygen vacancy density-dependent transformation from infrared to Raman active vibration mode in SnO2 nanostructures," Opt. Lett. 36, 4296-4298 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Kilic and A. Zunger, Phys. Rev. Lett. 88, 095501 (2002). [CrossRef] [PubMed]
  2. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science 276, 1395 (1997). [CrossRef]
  3. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001). [CrossRef] [PubMed]
  4. Y. J. Chen, L. Nie, X. Y. Xue, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 88, 083105 (2006). [CrossRef]
  5. J. Q. Hu, Y. Bando, Q. L. Liu, and D. Golberg, Adv. Funct. Mater. 13, 493 (2003). [CrossRef]
  6. L. H. Jiang, G. Q. Sun, Z. H. Zhou, S. G. Sun, Q. Wang, S. Y. Yan, H. Q. Li, J. Tian, J. S. Guo, B. Zhou, and Q. Xin, J. Phys. Chem. B 109, 8774 (2005). [CrossRef]
  7. W. Z. Wang, C. K. Xu, G. H. Wang, Y. K. Liu, and C. L. Zheng, J. Appl. Phys. 92, 2740 (2002). [CrossRef]
  8. L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, and M. Roumyantseva, J. Solid State Chem. 135, 78 (1998). [CrossRef]
  9. M. J. Zheng, L. Ma, W. L. Xu, G. Q. Ding, and W. Z. Shen, Appl. Phys. A 81, 721 (2005). [CrossRef]
  10. Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, Adv. Mater. 13, 1883 (2001). [CrossRef]
  11. M. N. Rumyantseva, Alexander M. Gaskov, N. Rosman, T. Pagnier, and J. R. Morante, Chem. Mater. 17, 893 (2005). [CrossRef]
  12. D. Z. Wang, S. L. Wen, J. Chen, S. Y. Zhang, and F. Q. Li, Phys. Rev. B 49, 14282 (1994). [CrossRef]
  13. M. A. Mäki-Jaskari and T. T. Rantala, Phys. Rev. B 65, 245428 (2002). [CrossRef]
  14. L. Z. Liu, X. X. Li, X. L. Wu, X. T. Chen, and P. K. Chu, Appl. Phys. Lett. 98, 133102 (2011). [CrossRef]
  15. L. Z. Liu, X. L. Wu, F. Gao, J. C. Shen, T. H. Li, and Paul K. Chu, Solid State Commun. 151, 811 (2011). [CrossRef]
  16. K. N. Yu, Y. H. Xiong, Y. L. Liu, and C. S. Xiong, Phys. Rev. B 55, 2666 (1997). [CrossRef]
  17. R. S. Hiratsuka, S. H. Pulcinelli, and C. V. Santilli, J. Non-Cryst. Solids 121, 76 (1990). [CrossRef]
  18. M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005). [CrossRef]
  19. C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, J. Phys. Chem. B 107, 9220 (2003). [CrossRef]
  20. I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited