OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 36, Iss. 23 — Dec. 1, 2011
  • pp: 4497–4499

Beyond-limit light focusing in the intermediate zone

K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, H. H. Hwung, and Andy Y.-G. Fuh  »View Author Affiliations


Optics Letters, Vol. 36, Issue 23, pp. 4497-4499 (2011)
http://dx.doi.org/10.1364/OL.36.004497


View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally verify that a new nanolens of a designed plasmonic aperture can focus visible light to a single line with its width smaller than the limit of half the wavelength in the intermediate zone. The experimental measurement indicates that while the near field plays a role to increase the spot size in the near zone, it is negligible at the beyond-limit focused region; i.e., the focused light is dominated by the radiative fields. The image taken by the optical microscope shows that the fields focused have propagated to the far zone. Besides being of academic interest, the nanolens capable in achieving a lower diffraction limit in the intermediate zone is important for application possibilities.

© 2011 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(050.1965) Diffraction and gratings : Diffractive lenses
(160.3918) Materials : Metamaterials
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 31, 2011
Manuscript Accepted: September 20, 2011
Published: November 22, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, H. H. Hwung, and Andy Y.-G. Fuh, "Beyond-limit light focusing in the intermediate zone," Opt. Lett. 36, 4497-4499 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-23-4497


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 2005).
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986). [CrossRef] [PubMed]
  3. D. G. Grier, Nature 424, 810 (2003). [CrossRef] [PubMed]
  4. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009). [CrossRef] [PubMed]
  5. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007). [CrossRef]
  6. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008). [CrossRef]
  7. M. Kaya and H. Higuchi, Science 329, 686 (2010). [CrossRef] [PubMed]
  8. A. Vaziri and A. Gopinath, Nat. Mater. 7, 15 (2008). [CrossRef]
  9. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010). [CrossRef] [PubMed]
  10. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 4, 83(2010). [CrossRef]
  11. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008). [CrossRef] [PubMed]
  12. X. Guo, J. Du, Y. Guo, and J. Yao, Opt. Lett. 31, 2613 (2006). [CrossRef] [PubMed]
  13. B. J. Lin, C. R. Physique 7, 858 (2006). [CrossRef]
  14. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and P. Alivisatos, Nat. Biotechnol. 23, 741 (2005). [CrossRef] [PubMed]
  15. G. Toraldo di Francia, Nuovo Cim 9, Suppl. 3, 426 (1952). [CrossRef]
  16. N. I. Zheludev, Nat. Mater. 7, 420 (2008). [CrossRef] [PubMed]
  17. M. V. Berry and S. Popescu, J. Phys. A 39, 6965 (2006). [CrossRef]
  18. P. R. H. Stark, A. E. Halleck, and D. N. Larson, Proc. Natl. Acad. Sci. USA 104, 18902 (2007). [CrossRef] [PubMed]
  19. E. Betzig and J. K. Truatman, Science 257, 189 (1992). [CrossRef] [PubMed]
  20. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  21. J. Zhu and G. V. Eleftheriades, Phys. Rev. Lett. 101, 013902(2008). [CrossRef] [PubMed]
  22. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002). [CrossRef] [PubMed]
  23. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, Appl. Phys. Lett. 83, 4500 (2003). [CrossRef]
  24. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998). [CrossRef]
  25. H. T. Liu and P. Lalanne, Nature 452, 728 (2008). [CrossRef] [PubMed]
  26. M. Padgett, J. Mod. Opt. 55, 3083 (2008). [CrossRef]
  27. K. R. Chen, Opt. Lett. 35, 3763 (2010). [CrossRef] [PubMed]
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).
  29. B. Knoll and F. Keilmann, Nature 399, 134 (1999). [CrossRef]
  30. R. Hillenbrand and F. Keilmann, Phys. Rev. Lett. 85, 3029(2000). [CrossRef] [PubMed]
  31. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  32. G. M. Lerman, A. Yanai, and U. Levy, Nano Lett. 9, 2139(2009). [CrossRef] [PubMed]
  33. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited