OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 23 — Dec. 1, 2011
  • pp: 4584–4586

Plasmonic critical angle in optical transmission through subwavelength metallic gratings

Zhonghua Wang, Guangyuan Li, Feng Xiao, Fan Lu, Kun Li, and Anshi Xu  »View Author Affiliations

Optics Letters, Vol. 36, Issue 23, pp. 4584-4586 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe and theoretically analyze the plasmonic analog of the critical angle phenomenon in optical transmission through subwavelength gratings milled in an optically thick metal film. The total transmission from a denser medium to a less dense one vanishes while the total reflection holds very strong, providing the incidence angle increases past the plasmonic critical angle (PCA). The conditions and physical origins of the total internal reflection above the PCA are clarified.

© 2011 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: July 27, 2011
Revised Manuscript: October 16, 2011
Manuscript Accepted: October 19, 2011
Published: November 25, 2011

Zhonghua Wang, Guangyuan Li, Feng Xiao, Fan Lu, Kun Li, and Anshi Xu, "Plasmonic critical angle in optical transmission through subwavelength metallic gratings," Opt. Lett. 36, 4584-4586 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997). [CrossRef] [PubMed]
  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  3. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005). [CrossRef] [PubMed]
  4. R. Zia and M. L. Brongersma, Nat. Nanotechnol. 2, 426 (2007). [CrossRef]
  5. M. R. Dennis, N. I. Zheludev, and F. J. García de Abajo, Opt. Express 15, 9692 (2007). [CrossRef] [PubMed]
  6. Y. Wang, K. Zhou, X. Zhang, K. Yang, Y. Wang, Y. Song, and S. Liu, Opt. Lett. 35, 685 (2010). [CrossRef] [PubMed]
  7. A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, Phys. Rev. Lett. 106, 123902 (2011). [CrossRef] [PubMed]
  8. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995). [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  10. Q. Cao and P. Lalanne, Phys. Rev. Lett. 88, 057403(2002). [CrossRef] [PubMed]
  11. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, Opt. Express 17, 2334(2009). [CrossRef] [PubMed]
  12. B. Wang and P. Lalanne, J. Opt. Soc. Am. A 27, 1432 (2010). [CrossRef]
  13. M. Guillaumée, L. A. Dunbar, and R. P. Stanley, Opt. Express 19, 4740 (2011). [CrossRef] [PubMed]
  14. R. Petit, Electromagnetic Theory of Gratings (Springer, 1980). [CrossRef]
  15. D. Maystre and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 9, 2218 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited