OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 23 — Dec. 1, 2011
  • pp: 4713–4715

Long-range surface plasmon polaritons propagating on a dielectric waveguide support

W. Mu and J. B. Ketterson  »View Author Affiliations

Optics Letters, Vol. 36, Issue 23, pp. 4713-4715 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the traditional long-range surface plasmon geometry, an ultrathin metal film is sandwiched between two layers having identical dielectric constants. Here we demonstrate the long-range surface plasmon polariton (LRSPP) properties for a new structure where a thin layer with a dielectric constant exceeding that of the surroundings is inserted within the sandwich, provided the layer thickness d satisfies the condition k d = m π where k is the component of the guide wavevector perpendicular to the layer and m is an integer. The resulting plasmon modes have smaller losses and nearly the same phase velocity as the original LRSPP. This provides a strategy to support silver films having thicknesses of 10 s of nanometers to create plasmonic devices for sensor applications.

© 2011 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(310.4165) Thin films : Multilayer design
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

Original Manuscript: August 3, 2011
Revised Manuscript: October 4, 2011
Manuscript Accepted: October 18, 2011
Published: December 1, 2011

W. Mu and J. B. Ketterson, "Long-range surface plasmon polaritons propagating on a dielectric waveguide support," Opt. Lett. 36, 4713-4715 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981). [CrossRef]
  2. R. W. Gruhlke, W. R. Holland, and D. G. Hall, Opt. Lett. 12, 364 (1987). [CrossRef] [PubMed]
  3. G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001). [CrossRef]
  4. Q. Min, C. Chen, P. Berini, and R. Gordon, Opt. Express 18, 19009 (2010). [CrossRef] [PubMed]
  5. A. Boltasseve, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, J. Lightwave Technol. 23, 413 (2005). [CrossRef]
  6. W. Mu, D. B. Buchholz, M. Sukharev, J. I. Jang, R. P. Chang, and J. B. Ketterson, Opt. Lett. 35, 550 (2010). [CrossRef] [PubMed]
  7. M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, J. Chem. Phys. 131, 034708 (2009). [CrossRef] [PubMed]
  8. P. Berini, Adv. Opt. Photon. 1, 484 (2009). [CrossRef]
  9. P. Berini, R. Charbonneau, and N. Lahoud, Nano Lett. 7, 1376 (2007). [CrossRef] [PubMed]
  10. Here, we only consider the real part of the left hand side of the equation. For long-range surface plasmon, the wavevector β is a complex number, where the imaginary part is much smaller than the real part; in turn, k2yd2 will also a complex number, with very small imaginary part.
  11. Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited