OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 3 — Feb. 1, 2011
  • pp: 358–360

Structure of plasmonic aerogel and the breakdown of the effective medium approximation

Michael D. W. Grogan, Susannah C. Heck, Katie M. Hood, Stefan A. Maier, and Tim A. Birks  »View Author Affiliations

Optics Letters, Vol. 36, Issue 3, pp. 358-360 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for making aerogel doped with gold nanoparticles (GNPs) produces a composite material with a well-defined localized surface plasmon resonance peak at 520 nm . The width of the extinction feature indicates the GNPs are well dispersed in the aerogel, making it suited to optical study. A simple effective medium approximation cannot explain the peak extinction wavelengths. The plasmonic field extends on a scale where aerogel cannot be considered isotropic, so a new model is required: a 5 nm glass coating on the GNPs models the extinction spectrum of the composite material, with air (aerogel), methanol (alcogel), or toluene filling the pores.

© 2011 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: October 27, 2010
Revised Manuscript: December 17, 2010
Manuscript Accepted: December 23, 2010
Published: January 28, 2011

Michael D. W. Grogan, Susannah C. Heck, Katie M. Hood, Stefan A. Maier, and Tim A. Birks, "Structure of plasmonic aerogel and the breakdown of the effective medium approximation," Opt. Lett. 36, 358-360 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Fricke and G. Reichenauer, J. Non-Cryst. Solids 95–96, 1135 (1987). [CrossRef]
  2. G. M. Pajonk, J. Non-Cryst. Solids 225, 307 (1998). [CrossRef]
  3. M. D. W. Grogan, M. D. Rollings, L. M. Xiao, W. J. Wadsworth, R. England, S. A. Maier, and T. A. Birks, in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper JThE21.
  4. M. D. W. Grogan, L. Xiao, T. A. Birks, Department of Physics, University of Bath, Bath, BA2 7AY, UK, R.England, Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK, and S.Heck, S. A. Maier, Department of Physics, Imperial College London, London, SW7 2AZ, UK, are preparing a manuscript to be called “Control of nanoparticle aggregation in aerogel hosts.”
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  6. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972). [CrossRef]
  7. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999). [PubMed]
  8. D. D. Smith, L. A. Snow, L. Sibille, and E. Ignont, J. Non-Cryst. Solids 285, 256 (2001). [CrossRef]
  9. W. L. Barnes, J. Opt. A 8, S87 (2006). [CrossRef]
  10. M. Pelton, J. Aizpurua, and G. Bryant, Laser Photon. Rev. 2, 136 (2008). [CrossRef]
  11. F. Tam, C. Moran, and N. Halas, J. Phys. Chem. B 10817290(2004). [CrossRef]
  12. C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6, 683(2006). [CrossRef] [PubMed]
  13. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. O. Tian, Nature 464, 392 (2010). [CrossRef] [PubMed]
  14. K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes, J. Fluoresc. 14, 677 (2004). [CrossRef]
  15. N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, Chem. Mater. 11, 2837 (1999). [CrossRef]
  16. L. W. Hrubesh, J. Non-Cryst. Solids 225, 335 (1998). [CrossRef]
  17. S. Murai, K. Fujita, K. Nakanishi, and K. Hirao, J. Non-Cryst. Solids 345–346, 438 (2004). [CrossRef]
  18. R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, Appl. Phys. Lett. 92, 201902 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited