OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 5 — Mar. 1, 2011
  • pp: 636–638

Fiber in-line Mach–Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao  »View Author Affiliations

Optics Letters, Vol. 36, Issue 5, pp. 636-638 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fiber in-line Mach–Zehnder interferometer is fabricated through selective infiltrating of two adjacent air holes of the innermost layer in the solid core photonic crystal fiber, assisted by femtosecond laser micromachining. The liquid infiltrated has higher refractive index than that of the background silica, and, hence, the two rods created can support a guide mode with lower effective refractive index than that of silica. The interference is produced by the fiber fundamental mode and the guide mode. The free spectral range (FSR) of the interferometer is found to be dependent on the photonic crystal fiber length, and a large FSR corresponds to a short photonic crystal fiber length. Such an interferometer device is robust and exhibits extremely high temperature sensitivity ( 7.3 nm / ° C for the photonic crystal fiber length of 3.4 cm ) and flexible operation capability.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 7, 2010
Revised Manuscript: January 24, 2011
Manuscript Accepted: January 25, 2011
Published: February 18, 2011

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, "Fiber in-line Mach–Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber," Opt. Lett. 36, 636-638 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, Opt. Lett. 34, 322 (2009). [CrossRef] [PubMed]
  2. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, J. Lightwave Technol. 27, 1617 (2009). [CrossRef]
  3. Y. Wang, C. R. Liao, and D. N. Wang, Opt. Express 18, 18056 (2010). [CrossRef] [PubMed]
  4. G. E. Town, W. Yuan, R. McCosker, and O. Bang, Opt. Lett. 35, 856 (2010). [CrossRef] [PubMed]
  5. W. Yuan, G. E. Town, and O. Bang, IEEE Sens. J. 10, 1192(2010). [CrossRef]
  6. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000). [CrossRef]
  7. Z. Wang, T. Taru, T. A. Birks, and J. C. Knight, Opt. Express 15, 4795 (2007). [CrossRef] [PubMed]
  8. W. E. P. Paddena, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004). [CrossRef]
  9. J. Du, Y. Liu, Z. Wang, Z. Liu, B. Zou, L. Jin, B. Liu, G. Kai, and X. Dong, Opt. Express 16, 4263 (2008). [CrossRef] [PubMed]
  10. Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010). [CrossRef]
  11. J. I. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B (to be published).
  12. T. Toyoda and M. Yabe, J. Phys. D 16, L97 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited