OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 5 — Mar. 1, 2011
  • pp: 681–683

Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method

Hidemi Tsuchida  »View Author Affiliations

Optics Letters, Vol. 36, Issue 5, pp. 681-683 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



I propose and demonstrate the use of the recirculating delayed self-heterodyne (DSH) method for measuring FM noise power spectral densities (PSDs), which are the most fundamental measure characterizing the spectral purity of laser sources. By analyzing the DSH beat signals with 1, 10, and 160 km delays, the FM noise PSD of a narrow- linewidth fiber laser is evaluated for Fourier frequency range between 10 Hz and 100 kHz , which exhibits flicker noise as the dominant contribution.

© 2011 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(120.3688) Instrumentation, measurement, and metrology : Lightwave analyzers
(060.2840) Fiber optics and optical communications : Heterodyne

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 26, 2010
Revised Manuscript: January 17, 2011
Manuscript Accepted: January 21, 2011
Published: February 24, 2011

Hidemi Tsuchida, "Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method," Opt. Lett. 36, 681-683 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Seimetz, High-Order Modulation for Optical Fiber Transmission (Springer, 2009). [CrossRef]
  2. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. Sydnor, R. F. Vessot, and G. M. R. Winkler, IEEE Trans. Instrum. Meas. IM-20, 105 (1971). [CrossRef]
  3. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004). [CrossRef]
  4. S. B. Foster and A. E. Tikhomirov, IEEE J. Quantum Electron. 46, 734 (2010). [CrossRef]
  5. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, Opt. Express 18, 14627 (2010). [CrossRef] [PubMed]
  6. O. Ishida, IEEE Photon. Technol. Lett. 2, 784 (1990). [CrossRef]
  7. O. Ishida, J. Lightwave Technol. 9, 1528 (1991). [CrossRef]
  8. O. Ishida, IEEE Photon. Technol. Lett. 4, 1304 (1992). [CrossRef]
  9. T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980). [CrossRef]
  10. H. Tsuchida, Opt. Lett. 15, 640 (1990). [CrossRef] [PubMed]
  11. J. W. Dawson, N. Park, and K. J. Vahala, IEEE Photon. Technol. Lett. 4, 1063 (1992). [CrossRef]
  12. P. Kartaschoff, Frequency and Time (Academic, 1978).
  13. K. Kikuchi, IEEE J. Quantum Electron. 25, 684 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited