OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 5 — Mar. 1, 2011
  • pp: 713–715

Nanoparticle plasmon resonances in the near-static limit

Thomas G. Pedersen, Jesper Jung, Thomas Søndergaard, and Kjeld Pedersen  »View Author Affiliations


Optics Letters, Vol. 36, Issue 5, pp. 713-715 (2011)
http://dx.doi.org/10.1364/OL.36.000713


View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localized surface plasmon resonances of metal nanoparticles of arbitrary shape are analyzed in the near-static limit with retardation included to the second order. Starting from the electrostatic approximation, the second-order correction to the resonant dielectric constant is expressed by means of a triple surface integral. For arbitrary nano particles with cylindrical symmetry we show how the triple surface integral can be significantly simplified, resulting in a computationally efficient scheme for evaluation of nanoparticle plasmon eigenresonances in the near-static limit. The approach allows for calculation of both dipolar and higher-order resonances.

© 2011 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Materials

History
Original Manuscript: September 28, 2010
Revised Manuscript: January 10, 2011
Manuscript Accepted: January 25, 2011
Published: February 28, 2011

Citation
Thomas G. Pedersen, Jesper Jung, Thomas Søndergaard, and Kjeld Pedersen, "Nanoparticle plasmon resonances in the near-static limit," Opt. Lett. 36, 713-715 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-5-713


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lal, S. Link, and N. J. Halas, Nat. Photon. 1, 641 (2007). [CrossRef]
  2. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985). [CrossRef]
  3. Y. C. Cao, R. Jin, and C. A. Mirkin, Science 297, 1536 (2002). [CrossRef] [PubMed]
  4. H. Atwater and A. Polman, Nat. Mater. 9, 205 (2010). [CrossRef] [PubMed]
  5. S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  6. J. W. Strutt (Lord Rayleigh), Philos. Mag. 41, 447 (1871).
  7. L. Lorenz, K. Dan. Vidensk. Selsk. Skr. 6, 1 (1890).
  8. G. Mie, Ann. Phys. 330, 377 (1908). [CrossRef]
  9. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  10. A. M. Kern and O. J. F. Martin, J. Opt. Soc. Am. A 26, 732 (2009). [CrossRef]
  11. T. Søndergaard, Phys. Status Solidi B 244, 3448 (2007). [CrossRef]
  12. H. Kawata, H. Tamarup, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003). [CrossRef]
  13. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, Phys. Rev. B 72, 155412 (2005). [CrossRef]
  14. J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. L. Larsen, and B. B. Nielsen, Phys. Rev. B 81, 125413 (2010). [CrossRef]
  15. J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. L. Larsen, and B. B. Nielsen, Phys. Rev. B (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited